

Industrial Technology Research Institute

Remote Sensing Technology Applied to Monitor Land Subsidence in CRAF

時頻分析與地球科學研討會

ITRI Industrial Tech

主講者: 洪偉嘉 博士

October 27, 2011

Contents

- Introduction
- Synergy of Monitoring Sensors
- INSAR Technology
 - Differential Radar Interferometry (DInSAR)
 - Persistent Scatterer Interferometry (PSI)
- Fusion of PSI and Leveling-derived Vertical Displacements
- Discussion and Conclusions

1. Introduction

Cumulative subsidence in Changhwa County from 1992 to 2010

4

Cumulative subsidence in Yunlin County from 1992 to 2010

Choushui River Alluvial Fan(CRAF)

1.Fine-granted sediment 2. Groundwater variation

2. Synergy of monitoring sensors

To **integrate** the land subsidence information obtained by **geodesy, geo-hydrological and geo-technical measurements** to achieve a **better understanding and modeling** of land subsidence phenomena.

Multi-Sensors Monitoring System

	Spatial Resolution	Measurement Frequency	Measurement (Vertical) Accuracy		
Leveling	1.5 - 2 km	1 year	0.5 - 1 cm		
Continuous GPS	10 - 15 km	1 day	05 - 1 cm		
Ionitoring Well	5 - 10 km	1 month	0.1 - 0.5 cm		
DInSAR	25 m	35 days	2 cm		

Distributions of Leveling Benchmarks, Monitoring Wells and GPS stations in CRAF

Continuous GPS Station 9 Stations

> Leveling Network 850 KM

Multi-layer Compaction Well 29 Wells

> Piezometer 108 Wells

GPS Technology Application

Campaign GPS

優點

- ・符合NGS58測量規範
- ·強制對心
- ·架設穩定
- 固定高度(利於測高)
- 樁型穩固, 不易破壞遺失
- 佔地面積小,兼具固定站

中華民國182781號 新型專利

Apply GPS to monitor land deformation

Continuous GPS

標石	多路極	杨文林	法修制器	会接	
種類	鼓鹿	18 / 14	(* 196 7270 4	XA	
混凝土式	高	好	1E,	固定在岩盤或土壤	
深鐵錯式	16,	好	非常低	固定在岩盤或土壤	
金屬棒外加 套筒式	低	섯	非常低	固定在岩盤上	
NGS 套筒式	低	好	非常低	固定在土壤中	
不鏽鋼柱式	N/A	好	非常低	固定在岩盤上	

Distribution of Continuous GPS Stations

Industrial Technology Research Institute

工業技術研究院

Aquifer-System Compaction in CRAF

Industrial Technology Research Institute

Comparison between Multi-Sensors System

日期(年/月)

Modeling Aquifer-System Compaction and Predicting Land Subsidence

Subsidence Analysis in Yunlin County

日期(年/月)

Aquifer Compaction Deeper than 300 m

雲林縣土庫國中監測井

Land Gravity Observation and Network

The Necessity of INSAR

Indu Rese

3. InSAR Technique

Characteristics and Applications of Civilian Radar Satellites

Satellite Abbreviation	Launch Date	Wavelength (cm)	Band	Orbital Repetition Cycle (days)	Applications
SEASAT	1978	23.5	L	3	Ocean temperature, Wind waves, Hydrology
ERS-1/2	1991/1995	5.6	С	35	Hydrology, Topographic mapping, Surface deformation detection
JERS-1	1992	23.5	L	44	Topographic mapping, Land cover and land use mapping, and Environment application
SIR-C	1994	3.2/ 5.6/ 23.5	X/ C/ L	variable	Topographic mapping, Land cover and land use mapping, Hydrology and Environment application
RADARSAT	1995	5.6	С	24	Ocean temperature, Hydrology, Topographic mapping, Surface deformation detection
ENVISAT	2002	5.6	С	35	Atmospheric chemistry, Biological oceanography, Ocean temperature, Wind waves, Hydrology, Agriculture and arboriculture, Natural hazard monitoring
ALOS	2003	23.5	L	44	Topographic mapping, Surface deformation detection, Land cover and land use mapping,
TerraSAR-X	2007	3.2	X	11	Rapid emergency response and Evironment application

Differential InSAR

Reflect Corner (ITRI)

整體優點
1. 質量輕
2. 耐強風
3. 不積水
4.360度旋轉
5. 準確調整仰角
6. 適用任何衛星

Persistent Scatterer InSAR PSI

$$\phi_{x,i} = \phi_{def,x,i} + \phi_{\alpha,x,i} + \phi_{orb,x,i} + \phi_{\varepsilon,x,i} + n_{x,i}$$

 $\begin{array}{c} \phi_{x,i} & : \text{ interferometric phase } \phi_{orb,x,i}: \text{ orbit effect} \\ \phi_{def,x,i}: \text{ surface displacement } \phi_{\varepsilon,x,i}: \text{ DEM residual effect} \\ \phi_{\alpha,x,i}: \text{ atmospheric effect } n_{x,i}: \text{ noise } \\ \texttt{T$$$$ \texttt{x}$$ ftôrt fto the log the strutture of the strutture of the structure of$

StaMPS/MTI Data Process

Industrial Technology Research Institute The **Additional and the analysis of the ball of th**

 σ_A and μ_A are the standard deviation and the mean of a series of amplitude values, respectively.

$$\mu_{A} = \frac{1}{n} \sum_{i=1}^{n} V_{A(i)}$$
$$\sigma_{A} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (V_{P(i)} - \overline{V_{P(i)}})^{2}}$$

, is defined by Ferretti et

The amplitude dispersion index, al. [2001] as σ .

$$D_A \equiv \frac{O_A}{\mu_A} \tag{1}$$

There is a statistical relationship between amplitude stability and phase stability, consideration of amplitude is useful both to reduce the number of pixels for phase analysis, and to better estimate the probability of a pixel being a PS. [Ferretti et al., 2001; Hooper et al., 2007]

$$\phi_{x,i} = \phi_{def,x,i} + \phi_{\alpha,x,i} + \phi_{orb,x,i} + \phi_{\varepsilon,x,i} + n_{x,i}$$
(2)

Phase Data

 ϕ_{α} is the phase due to the difference in atmospheric delay between passes

 ϕ_{orb} is the residual phase due to satellite orbit inaccuracies

n is a noise term due to variability in scattering, thermal noise, co-registration errors etc.

We define a measure of the variation of this residual phase for a pixel as

$$\gamma_{x} = \frac{1}{N} \left| \sum_{i=1}^{N} \exp\{\sqrt{-1} \left(\phi_{x,i} - \tilde{\phi}_{x,i} - \Delta \hat{\phi}_{\varepsilon,x,i}^{u} \right) \right\} \right|$$

where N is the number of interferograms

 $\phi_{x,i}$ is a wrapped estimate of the spatially correlated parts of each of the terms

 $\Delta \hat{\phi}^u_{arepsilon,x,i}$ denotes the spatially uncorrected part of $\phi_{arepsilon,x,i}$

³ASAR images from Track 232, Frame 3123 of ENVISAT

In this paper, we used 20 images from August 2006 to

PSI Result

The 20 time-series interferograms over the 2006-2008 period

The 20 interferograms were stacked to obtain the mean LOS displacement rates

35

Vertical Displacement from PSI Result

36

Cross Validation

153413 PS pixels in 1523km²: 107.6 pixels/km² 294 Benchmarks in 1523km² 0.19 points/km² 24°00' 24°00' Dagun Shiang Dawn Shang ⋇ hanghua Count Changhua Count Pusin Paste Shenfin Is Shiang Yunlin County Yunlin Count Silm 1 Yonging Erlin Jen Shang Shetou Sheng 23°54' 23°54 Pitou Thanwei Shang 1010111 Shiang Shang Standmin Jian Thanihony Dacheng Shiang Dacheng Shiang Jhutang Shiang Sijhan Shiang Sillou Shimp Erluen Shiang 23°48 Balmel Shimp Bashuei Shiang 23°48 Shiluo Shia Shilum S Shinan Shinang Mailiao Shiang Luenbei Mailino Shiana Shiang Istung Shang WR12 Tatang Shang Linnel Shiang Linnel Shiang Huwei Jen Huwe Baujung Douliou Shiang Daulieu Shanne Shiang 23°42 23°42' Dungsh Shiang Gulong Shing Gulang Shang Donnan Jen 120°12' 120°18' 120°24 120°30' 120°36' 120°12' 120°24' 120°18' 120°30' 120°36' Reference Point (WR12) Outside Leveling Network Region Reference Point (WR12) Chung Shan Highway Chung Shan Highway High Speed Rail PSI Result (2006-2008) Leveling Result (2006-2008) Vertical Displacement Rate (cm/year) Vertical Displacement Rate (cm/year) -2 -3 -4 0 -2 -3

(Hung et al., 2011)

1. Density 2. Boundary 3. Industrial Park

Comparison of vertical displacements between PSI and Leveling

Summary of causes of large difference

⁴⁰ Fusion of PSI and leveling-derived vertical displacements

Leveling : High Vertical Accuracy; Low Density

■ PSI : Low Vertical Accuracy; High Density

Research Institu

40

Comparison of vertical displacements between PSI and Leveling

5. Discussion and Conclusions

PSI Benefit

- More detailed spatial and temporal coverage
- Better represents the overall subsidence pattern.
- Future Work
 - -Wavelet functions or Spectral combinations can be employed.
 - -Use PSI to monitor Taiwan's deformation, validated by 300 continuous GPS stations

