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We introduce a generic framework of dynamical complexity to understand and quan-
tify fluctuations of physiologic time series. In particular, we discuss the importance of
applying adaptive data analysis techniques, such as the empirical mode decomposition
algorithm, to address the challenges of nonlinearity and nonstationarity that are typi-
cally exhibited in biological fluctuations.
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1. Introduction

One of the great challenges of contemporary biomedical science is to understand
more fully the dynamics of living systems in health and disease. The importance of
this challenge is highlighted by headlines announcing unexpected, life-threatening
side effects of once-promising drugs, as well as the serendipitous discoveries deriving
from “outside the box” approaches to major public health problems, for example,
in heart disease and cancer biology. The basis of such unexpected findings, both
negative and positive, is the extraordinary complexity of physiologic systems, which
exceeds that of the most challenging systems in the physical world. These systems
defy understanding based on traditional mechanistic models and conventional bio-
statistical analyses.

The overall aim of this paper is to develop a deeper understanding of the dynam-
ics underlying healthy biological systems and what occurs when these systems lose
their robustness due to aging or disease. We will address these fundamental ques-
tions from data analysis perspective. Specifically, why novel adaptive data analysis
techniques essential to understand these important issues are. However, because of
the nonlinear complexity of these biological systems, it is unrealistic to achieve this
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goal purely by a traditional engineering (reductionist) approach in which one dis-
assembles the system into its constituent pieces, studies each component in detail,
and finally puts them back together, recreating the original entity. Even in rare
cases where this type of reductionist program can be accomplished, the integrative
system’s behavior typically surprises expectations based solely on the information
gathered through analyzing each component in isolation. In everyday parlance, this
well-known effect is referred to as the whole being different than the sum of the parts.
In the language of complex systems, it is known by the term “emergent properties.”
In nonlinear systems, the composite or group behavior (of molecules, cells, organs,
individuals, and even societies) cannot be fully understood by simply “adding up”
the components. Instead, one needs rigorous, new approaches to model, measure
and analyze a system’s integrative behavior.

2. Complex System Approaches

Central to this enterprise are computational tools and models that usefully represent
the behavior of the intact system. These system-level measurements and models
also need to capture certain generic and robust properties of complex biological
systems, such that they have a wide range of applications across many disciplines.
To this end, we have focused on studying the output signals generated by complex
biological systems. The dynamical fluctuations of these signals in health and disease
provide a unique window into the free-running behavior of the integrative systems.

To identify system-level behaviors that are critical to our understanding of
healthy dynamics and of pathological disturbances, we pursued investigations under
the framework of three complementary hypotheses:

1. The complexity of a biological system reflects its ability to adapt and function
in an ever-changing environment.

2. Biological systems need to operate across multiple scales of space and time, and
hence their complexity is also multiscale and hierarchical.

3. A wide class of disease states, as well as aging, appear to degrade this biological
complexity and reduce the adaptive capacity of the system. Thus, loss of com-
plexity may be a generic, defining feature of pathologic dynamics, and the basis
of new diagnostic, prognostic, and therapeutic approaches.

To investigate the above hypotheses by studying the dynamical fluctuations
of output signals generated by complex biological systems. We developed some
innovative approaches in recent years. These system approaches and their associ-
ated computational tools promise to provide insights into a wide range of biomed-
ical problems. Examples include forecasting catastrophic events such as epileptic
seizures and sudden cardiac arrest, studying gene evolution, searching and catego-
rizing large biomedical and other types of databases, and screening for drug toxicity
and efficacy, to name but a few. These diverse applications are strong indications of
the potential of these new approaches to advance the science of complex systems.
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3. The Origin of Physiologic Variability

Dynamical fluctuations in the output of complex biological systems with multiple
interacting components often exhibit remarkably complicated patterns. Such fluc-
tuations have long been ignored by conventional analyses. Indeed, the presence of
these fluctuations is often assumed to simply reflect the fact that biological systems
are being constantly perturbed by external and intrinsic noise. However, recent
findings by our group and others clearly indicate that these complex fluctuations
exhibit interesting structures that were not previously anticipated.’® More impor-
tantly, these fluctuations may also contain useful information about the emerging
complexity of the systems.” 3 Here we develop a dynamical system perspective to
understand the origin of these fluctuations.

3.1. State space representation

In dynamical systems research, it is common to describe a system by a set of
variables. If defined properly, these so-called state variables can uniquely determine
the state of the system and the time course of its revolution (see Fig. 1).

Assuming that how a system changes in time is purely deterministic, then the
goal of the state space approach is to find equations of motion for the underlying
dynamics in order to understand, predict, and control the system.

However, for biological systems, this approach is not feasible due to two intrinsic
difficulties. First, the state space is of very high dimensionality, and not all variables
can be measured. For example, to fully describe the state of human physiology, one
might need to monitor hundreds of variables (including heart rate, blood pressure,
body position, muscle tone, oxygen and multiple hormones level in the blood, etc).
Although macroscopic variables can be used as state variables to reduce the dimen-
sionality of the state space, it is unclear what the proper macroscopic variables are

State (phase) space

State

Fig. 1. A schematic illustration of 3-D state space. In this example, a system is fully described
by 3 state variables. At any given moment, the system is represented as a point (state) in this
space. The trajectory of the system traces out the time evolution of changes of the system’s state.
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in this case. Furthermore, biological systems are not purely deterministic, many
stochastic factors constantly influence them. Although these two considerations
significantly limit the application of tools developed in dynamical system anal-
ysis to biological systems, the state space representation is still a useful picture
conceptually.

3.2. System complexity as a measure of adaptability

As we discussed previously, a meaningful quantification of the complexity of a bio-
logical system should be related to the system’s capacity to adapt and function in
an ever changing environment. The system that can adapt to the most external
challenges (stresses) will have the best advantage for survival. Therefore, we pro-
pose that biological systems have been evolving to increase their dynamical capacity
(complexity). As a result, biological systems we observed today are highly complex
since they are the products of a very long evolutionary process. We also hypothe-
sized that aging and disease will degrade a systems complexity, since they represent
a less adapted system.

Using the state space concept, an external perturbation (challenge or stress) to
a biological system requires the system to move from one location to a different
area of the state space in order to adapt to the perturbation. A healthy system
should be able to easily move from one area to another, while a diseased system
has a very limited ability to adapt, and thus cannot move to other regions of the
state space.

Complexity is a measure of a system’s capacity to adapt, therefore, it should be
related to the total available volume of the state space. Theoretically, we can mea-
sure the size of the available state space by either observing the system’s trajectory
for a very long time (asymptotically, the underlying dynamical system will visit all
available state space), or by perturbing the system with all possible stresses and
calculate the volume of the state space being covered. However, both implemen-
tations are not realistically feasible. Therefore, we proposed an alternative way to
derive the desirable information as will be discussed in the following sections.

3.3. Analogy of Brownian motion

In 1905, Einstein published several important papers that took physics into a com-
pletely new world. In addition to his famous papers on special relativity and pho-
toelectric effect, his paper on Brownian motion also had a great impact. In that
paper, he concluded that the same random forces which cause the erratic Brownian
motion of a particle suspended in fluid would also cause drag (viscosity) if the par-
ticles were pulled through the fluid. In other words, by measuring the spontaneous
fluctuation of the particle at rest, one can know how much dissipative frictional
force one must do work against, if one tries to perturb the system in a particular
direction.
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This derivation between spontaneous fluctuations without external perturbation
and the system’s response to perturbation is of fundamental importance. It is later
generalized as the fluctuation dissipation theorem.'* It motivated the investigation
of fluctuating phenomena in statistical physics of the 20th century.

We hypothesized that the same principle can be applied to the state space
representation. If our assumption is true, then we can simply measure the spon-
taneous fluctuations of a system in the state space when it is under free-running
condition, and use that information to predict the ability that a system can adapt
when encounters a challenge. Similar to Einstein’s finding for Brownian particle,
the greater the spontaneous fluctuation, the easier for it to move (lower viscosity)
in that space when external perturbation is applied.

This assumption dramatically simplifies our task of defining a system’s com-
plexity. Next, we will discuss how to construct a surrogate state space when there
is only limited information on state variables.

3.4. Surrogate state space

In the past several years, we have successfully developed an innovative algorithm
to probe the state space indirectly. The goal was to overcome the barrier that
in real-world condition, one can only monitor a very limited set of physiologic
signals (as state variables). Effectively, we are observing a low-dimensional pro-
jection of a trajectory embedded in the much higher dimension of state space.
Therefore, it is critical to extract as much information as possible from any
single physiologic variable to gain some insight into the high dimensional state
space.

For deterministic dynamical systems, there are rigorous approaches, such as
the Poincaré map, to study a high dimensional trajectory in a low dimensional
subspace. Similarly, in chaos theory, recurrence plots'® and phase-space portraits'®
are frequently used techniques for this purpose. However, physiologic systems do
not meet the criterion (e.g., deterministic and periodic) for applying these analyses.
Off-the-shelf usage of those tools to biological time series may lead to misleading
conclusions.

Our approach was to take advantage of the fact that an integrative physiologic
system will have complex coupling between different components of the system.
In biological systems, these couplings often exhibit different spatial and temporal
scales. Therefore, by investigating any given signal at various time scales, we can
probe the other dimensions of the abstract state space.

By combining these concepts discussed in this section, we have implemented
some useful computational algorithms to quantify features related to complexity of
biological systems from fluctuating time series of physiologic variables. Our defini-
tion of a system’s complexity also ensures that our index closely reflect the general
health status of the system. In the next section, we will briefly discuss the algo-
rithms we have developed.
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4. Quantifying a System’s Complexity

For practical purposes, it is useful to quantify the degree of complexity of a biolog-
ical system by examining its dynamical fluctuations. Such metrics have potentially
important applications both with respect to evaluating dynamical models of biolog-
ical systems and to clinical monitoring. Substantial attention, therefore, has been
focused on defining a quantitative measurement of complexity.®~13 172! However,
no consensus has been reached on this issue. We have used an alternative view,
as discussed in previous sections, to look at these biological variabilities to derive
some useful measurements of how complex a system is.

Over the past several years, our group have developed quantitative algorithms to
probe some of the generic features of complex systems and applied these computa-
tional tools to the understanding of the underlying system dynamics. For example,
we have introduced fractal scaling,?>23 multiscale entropy (MSE)?%25 and time
irreversibility®® analysis techniques and applied them to the study of the cardiac
dynamics of healthy subjects and patients with different types of pathologies. The
former technique quantifies the information content of a signal across multiple time
scales and the latter quantifies the degree of temporal irreversibility over multiple
time scales. Time irreversibility is a property related to the unidirectionality of the
energy flow across the boundaries of a living system, which utilizes free energy to
evolve to more hierarchically ordered structural configurations and less entropic
states in comparison with the surrounding environment.

Based initially on the analysis of the cardiac rhythm?% 2® (under neuroautonomic

control) and gait dynamics,?”

we have shown that healthy systems, those with
the highest capacity to adjust to continuous (and often unpredictable) changes
of internal and external variables, generate the most physiologically complex and
the most time irreversible signals. We have shown further that both multiscale
variability and time irreversibility properties degrade with aging and disease. These
results challenge traditional mechanisms of physiologic control based on classical
homeostasis (single steady state dynamics) and are of interest from a number of
other perspectives, including basic modeling of regulatory systems and practical
bedside applications.

5. Technical Challenges and Adaptive Signal Analysis

In this section, we will briefly discuss the importance of applying adaptive signal
analysis techniques, in conjunction with the complexity related methods described
above, to obtain more accurate quantitative measurements of complex biological
systems.

5.1. Problem of nonstationarity

The quantitative tools we have developed, such as the multiscale entropy (MSE)
analysis, for the analysis of complex physiologic time series are based on generic
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concepts that are fundamental to biological systems. As a result, these tools are
readily applicable to many different biomedical problems. However, since physio-
logic time series are typically nonstationary, there are important technical issues
that need to be addressed in order to obtain reliable results.

For example, the MSE analysis was derived from stationary processes. In prac-
tice, time series need not to be strictly stationary according to the mathemati-
cal definition to yield meaningful results. However, nonstationarities appearing on
scales larger than those considered for MSE analysis may substantially affect our
measurements. Such nonstationarities need to be taken care of prior to perform-
ing the MSE analysis. Our study of postural sway time series?® indicates that by
properly detrending the time series on scales greater than those being measured by
the MSE, the analysis provides robust and consistent results. The empirical mode
decomposition (EMD) technique?® is a very adequate candidate for pre-processing
the data, since it provides a systematic way to detrend the data without a priori

assumptions of what type of trend the data may possess.>C

5.2. Nonlinear dynamical coupling among components of system

A fundamental question about complex biological systems is how does the observed
complex dynamics, as quantified by our complexity related measurements, emerge
from integrated system functions. Understanding possible mechanisms of healthy
complexity is important both on the basic scientific level and on the practical level,
where clinical interventions can be proposed to maintain or restore this dynamical
complexity. By observing the degradation of dynamical complexity in disease and
aging, one realizes that life-threatening pathologic conditions are typically accompa-
nied by either complete de-coupling between sub-components of the whole system,
or a strong “mode-locking” among them. In contrast, a healthy biological system
usually displays intermittent coupling between its sub-systems. Each component of
the system may engage and then dis-engage with other components of the system.
This type of on-and-off “cross-talk” between different parts of a complex system
(reminiscent of how different instruments are integrated together in a symphony
orchestra) seems to be a prominent characteristic of healthy biological function. As
a result, quantifying the coupling among different sub-system components is criti-
cal to our understanding of the complex system as a whole. From a data analysis
point of view, one should be able to characterize the coupling between the two com-
ponents of a system by simultaneously collecting the signals that represent those
components. However, technically, quantifying the coupling is not an easy task. The
main difficulties are due to the fact that both signals are often nonstationary, and
the coupling between them is usually nonlinear and intermittent. To quantify the
intermittency, the analysis method has to separate any local variation and collate
the different scales of the intermittent processes separately and cleanly in both
temporal and scale variables. Here the recently developed Ensemble EMD?! has
the potential to offer great help.
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Therefore, it is essential to apply adaptive data analysis techniques to address
the nonlinear and nonstationary challenges as demonstrated by recent works of

our group and others.32734

For example, we have applied the EMD algorithm to
study the role of coupling between blood pressure and cerebral flood flow in cerebral
autoregulation. Cerebral autoregulation is a mechanism that involves dilatation and
constriction of arterioles to maintain relatively stable cerebral blood flow in response
to changes of systemic blood pressure. Traditional assessments of cerebral autoreg-
ulation use Fourier-based techniques, such as transfer function analysis, that fail
to yield robust and consistent results in typical clinical settings. The EMD method
substantially improves our ability to accurately quantify the dynamical interactions
between blood pressure and cerebral blood flow.?2734 Furthermore, since the EMD
can provide phase and frequency information on instantaneous basis, analysis of
its dynamical feature (i.e., how do these interaction change over time) becomes
feasible. Future work along this direction may have clinical importance and also
provide mechanistic understanding toward the theory of dynamical complexity we
proposed.

6. Discussion

We have developed a generic framework for extracting “hidden information” in
time series generated by complex biological systems. Specifically, we discussed the
underlying assumptions that make it possible to probe the behavior on the sys-
tem level via examining the dynamical fluctuations of a single variable. We also
proposed meaningful measurements of complexity for biological systems that are
based on the framework we developed. We have used those complexity measures
to study the outputs of cardiac heartbeat regulatory system,?® gait dynamics,2”
and postural control.?® Briefly, we found that, under free-running conditions, the
dynamics of healthy systems are the most complex, as measured by the multiscale
entropy and time irreversibility methods, and that complexity breaks down with
aging and disease. We also studied the effects of a noise-based therapeutic inter-
vention designed to improve postural balance?® on the overall complexity of the
postural sway dynamics. We found that there is an increase in multiscale complex-
ity during the application of this intervention. This finding supports the notion of
using dynamical biomarkers for assessing noise-based and other types of therapeu-
tic interventions. However, one needs to be aware of potential technical issues when
applying these new measures to physiologic time series. In this paper, we discussed
how to utilize the EMD technique to overcome the problems when data are not
“well-behaved.” Thus the EMD approach constitutes an essential step of complex
physiologic signal analysis.
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There has been considerable interest in quantifying the complexity of physiologic time series, such as
heart rate. However, traditional algorithms indicate higher complexity for certain pathologic processes
associated with random outputs than for healthy dynamics exhibiting long-range correlations. This
paradox may be due to the fact that conventional algorithms fail to account for the multiple time scales
inherent in healthy physiologic dynamics. We introduce a method to calculate multiscale entropy (MSE)
for complex time series. We find that MSE robustly separates healthy and pathologic groups and con-
sistently yields higher values for simulated long-range correlated noise compared to uncorrelated noise.

DOI: 10.1103/PhysRevLett.89.068102

Quantifying the “complexity” of physiologic signals in
health and disease has been the focus of considerable
attention [1-4]. Such metrics have potentially important
applications with respect to evaluating both dynamical
models of biologic control systems and bedside diagnos-
tics. For example, a wide class of disease states, as well as
aging, appear to degrade physiologic information content
and reduce the adaptive capacity of the individual. Loss of
complexity, therefore, has been proposed as a generic
feature of pathologic dynamics [1,3].

Traditional entropy-based algorithms quantify the regu-
larity (orderliness) of a time series. Entropy increases with
the degree of disorder and is maximum for completely
random systems. However, an increase in the entropy
may not always be associated with an increase in dynami-
cal complexity. For instance, a randomized time series
has higher entropy than the original time series, although
the process of generating surrogate data destroys correla-
tions and degrades the information content of the original
signal.

Diseased systems, when associated with the emergence
of more regular behavior, show reduced entropy values
compared to the dynamics of free-running healthy systems
[3]. However, certain pathologies, including cardiac ar-
rhythmias like atrial fibrillation, are associated with highly
erratic fluctuations with statistical properties resembling
uncorrelated noise [5—7]. Traditional algorithms will yield
an increase in entropy values for such noisy, pathologic
signals when compared to healthy dynamics showing cor-
related (1/f-type) properties, even though the latter repre-
sent more physiologically complex, adaptive states. This
inconsistency may be related to the fact that widely used
entropy measures are based on single-scale analysis and do
not take into account the complex temporal fluctuations
inherent in healthy physiologic control systems.

The entropy H(X) of a single discrete random variable X
is a measure of its average uncertainty. Entropy is calcu-
lated by the equation:
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where X represents a random variable with set of values ®
and probability mass function p(x;).

For a time series representing the output of a stochastic
process, that is, an indexed sequence of n random vari-
ables, {X;} = {X|, ..., X,,}, with set of values ©,...,0,,
respectively, the joint entropy is defined as

Hy== % 3 plr oz logplay,....x,),

X €0, X, €0,

)

where p(x,, ..., x,) is the joint probability for the n vari-
ables X, ..., X,,.

The state of a system at a certain instant, X,,, is partially
determined by its history, X, X, ..., X,,—;. However, each
new state carries a certain amount of new information. The
mean rate of creation of information, also known as the
Kolmogorov-Sinai (KS) entropy, is a useful parameter to
characterize the system dynamics [8]. Considering that the
phase space of a system with D degrees of freedom is
partitioned into hypercubes of content £ and the state of
the system is measured at intervals of time 7, the KS
entropy is defined as

Hys = lim lim Tim (H,,,, — H,). 3)

£—0 n—o0

Numerically, only entropies of finite order n can be
computed. As soon as n becomes large with respect to
the length of a given time series, the entropy H,, is under-
estimated and decays towards zero. Therefore, the KS
entropy for “real-world” time series of finite length cannot
usually be estimated with reasonable precision.

For the analysis of such typically short, noisy time
series, Pincus [9] introduced the approximate entropy
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(ApEn) family of parameters, which have been widely
used in physiology and medicine [1]. Recently, a modified
algorithm, sample entropy (SampEn) [4], has been pro-
posed which has the advantage of being less dependent on
the time series length. Such algorithms, however, assign a
higher value of entropy to certain pathologic time series
that are presumed to represent less complex dynamics than
to time series derived from healthy function [3]. One
possible reason for obtaining these results may be the
fact that these measures are based on a single scale. Both
the KS entropy and the related ApEn parameters depend on
a function’s one step difference (e.g., H,+; — H,) and
reflect the uncertainty of the next new point, given the
past history of the series. Therefore, such measures do
not account for features related to structure on scales
other than the shortest one.

Zhang [10,11] proposed a general approach to take into
account the multiple time scales in physical systems. His
measure, based on a weighted sum of scale dependent
entropies, does, in fact, yield higher values for correlated
noises compared to uncorrelated ones. However, since it is
based on Shannon’s definition of entropy, Zhang’s method
requires a large amount of almost noise-free data, in order
to map a signal to a discrete symbolic sequence with
sufficient statistical accuracy. Therefore, it presents ob-
vious limitations when applied to typical physiologic sig-
nals that vary continuously and have finite length.

Here we introduce a multiscale entropy technique appli-
cable to the analysis of the biologic time series. We study
simulated noises as well as human cardiac interbeat inter-
val time series, the latter representing the output of a major
physiologic control system.

Given a one-dimensional discrete time series, {xj, ...,
Xj, ..., Xy}, We construct consecutive coarse-grained time
series, {y(”}, determined by the scale factor, 7, according
to the equation: y;” = 1/7'25;“7”#1 x,1 =j= N/
For scale one, the time series {y('} is simply the
original time series. The length of each coarse-grained
time series is equal to the length of the original time series
divided by the scale factor, 7. Here we consider time series
with 3 X 10* points and coarse-grain them up to scale 20,
so that the shortest time series has 1500 points. We then
calculate an entropy measure (SampEn) for each coarse-
grained time series plotted as a function of the scale factor
7 [12]. We call this procedure multiscale entropy (MSE)
analysis [13].

We first test the MSE method on simulated white and
1/f noises [14]. We find that for scale one, a higher value
of entropy is assigned to white noise time series in com-
parison with 1/f time series. However, while the value of
entropy for the coarse-grained 1/f series remains almost
constant for all scales, the value of entropy for the coarse-
grained white noise time series monotonically decreases,
such that for scales > 5, it becomes smaller than the
corresponding values for 1/f noise (Fig. 1). This result is
consistent with the fact that, unlike white noise, 1/f noise
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FIG. 1. MSE analysis of Gaussian distributed white noise
(mean zero, variance one) and 1/f noise. On the y axis, the
value of entropy (SampEn) for the coarse-grained time series is
plotted. The scale factor specifies the number of data points
averaged to obtain each element of the coarse-grained time
series. Symbols represent results of simulations for time series
of 3Xx10* points [12], and dotted lines indicate
analytic results. SampEn for coarse-grained white noise time
series, is analytically calculated by the expression
—Inf*21 (i)[erf(%) - erf(\/"(;#)]e’(]/z'*sz.x. 7 and erf
refer to the scale factor and to the error f nction, respecti el . r
is defined in Refs. [4,9,12]. For 1/f noise time series, the
anal tic al e of SampEn is a constant.

contains complex structures across multiple time scales
[10,11].

Next, we apply the MSE method to the analysis of
selected physiologic time series (Fig. 2). We compare the
time series of consecutive heartbeat intervals derived from
healthy subjects, patients with severe congestive heart
failure [15], and patients with the cardiac arrhythmia, atrial
fibrillation. In Fig. 3, we observe three different types of
behaviors: (1) The entropy measure for time series derived
from healthy subjects increases on small time scales and
then stabilizes to a constant value. (2) The entropy measure
for time series derived from subjects with congestive heart
failure, a life-threatening condition, markedly decreases on
small time scales and then gradually increases. (3) The
entropy measure for time series derived from subjects with
atrial fibrillation monotonically decreases, similar to white
noise. Of note, for scale one, atrial fibrillation time series
are assigned the highest value of entropy [17], and healthy
heartbeat time series are not distinguishable from those of
heart failure patients. The largest separation between heart
failure patients and healthy subjects is obtained for time
scale 5. At the highest scales, the entropy values for the
healthy heartbeat fluctuations are significantly higher than
those of both pathologic groups.

We also find that the asymptotic value of entropy may
not be sufficient to separate time series that represent the
output of different dynamical processes. As seen in Fig. 3,
for time scale 20, the value of the entropy measure for the
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FIG. 2. Representati e heartbeat inter als time series from
(a) health indi id al (sin srh thm), (b) s bject ith congesti e
heart fail re (sin s rh thm), and (c) s bject ith the cardiac
arrh thmia, atrial fibrillation.

heart fail re and atrial fibrillation time series is the same.
Ho e er, these time series represent the o tp t of a er
different t pe of cardiac d namics (Fig. 2). Therefore, not
onl the specific al es of the entrop meas re b t also
their dependence on resol tion need to be taken into
acco nt to better characteri e a ph siologic process.

We f rther test the MSE algorithm b comparing the
heartbeat time series from 20 health elderl s bjects,
10 males and 10 females (mean age *=SD, 69 * 3 yr),
and 20 health 0 ng s bjects, 10 males and 10 females
(mean age =SD, 32 * 6 yr) (Fig. 4). We find that for all
time scales, a higher al e of entrop is assigned to time
series from 0 ng s bjects, consistent ith the h pothesis
of loss of comple it ith age [3]. Of note, the eakest
separation bet eenthet ogro psocc rs for scale one, the
onl scale st died b traditional entrop metrics. The
strongest separation is obtained for time scale 5.

Finall , the MSE algorithm as tested on a set of
s rrogate data obtained from the heart rate time series of
a health s bject b simple randomi ation of its data
points. The MSE algorithm discriminated the t o time
series and re ealed that the randomi ed s rrogate data

as less comple than the original ph siologic data.
F rthermore, it assigned to the s rrogate data set a beha -
ior g alitati el similar to the one alread described for

hite noise time series.

O r findings are of interest from the follo ing perspec-
ti es. The long-standing problem of deri ing sef | mea-
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FIG. 3. MSE anal sis of interbeat inter al time series deri ed
from health s bjects, s bjects ith congesti e heart fail re
(CHF), and s bjects ith atrial fibrillation (AF), as sho n in
Fig. 2. Val es are gi en as means = standard error [16]. Time
series ere filtered to remo e o tlier points d e to artifacts and
entric lar ectopic beats. The al es of entrop depend on the
scale factor. For scale one, AF time series are assigned the
highest al e of entrop , and the al es corresponding to health
and CHF gro ps completel o erlap. For larger scales, e.g., 20,
theentrop  al e for the coarse-grained time series deri ed from
health s bjects is significantl higher than those for AF and
CHF. At this scale, AF and CHF gro ps become indistin-
g ishable.

s res of time series comple it is germane to anal ing
both the o tp t of ph sical and biologic s stems. In this
respect, the MSE method appears to ield a more mean-
ingf | approach than con entional entrop meas rements.
MSE is based on the simple obser ation that comple
ph sical and biologic s stems generall e hibit d namics
that are far from the e trema of perfect reg larit and
complete randomness. Instead, comple d namics t pi-
call re eal str ct re on m ltiple spatial and temporal
scales. These m ltiscale feat res, ignored b con entional
entrop calc lations, are e plicitl addressed in the MSE
algorithm.

The MSE algorithm ields consistent findings hen
applied to assessing the comple it of both (a) sim lated
correlated and ncorrelated noises and (b) the integrated
o tp t of a major ph siologic control s stem (cardiac
interbeat inter als) nder health and pathologic condi-
tions. In partic lar, e find, in accord ith Zhang [10],
that correlated (1/f) noise has a higher comple it le el
than ncorrelated ( hite) noise hen m Itiple time scales
are taken into acco nt (Fig. 1). We also find that pathologic
d namics associated ith either increased reg larit /de-
creased ariabilit [Fig. 2(b)] or ith increased ariabilit
d e to loss of correlation properties [Fig. 2(c)] are both
characteri ed b a red ction in comple it . This finding
is compatible ith the nif ing concept that ph sio-
logic comple it is f ndamentall related to the adapti e
capacit of the organism, hich req ires integrati e,
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FIG. 4. MSE anal sis of the cardiac interbeat time series
deri ed from health o ng s bjects and health elderl s b-
jects. Val es are gi en as means =+ standard error [16]. For all
time scales, the al es of entrop for coarse-grained time series
obtained from elderl s bjects are significantl (p < 0.005;
St dent’s r-test) lo er than those from o0 ng s bjects. The
poorest separation bet een gro ps is obtained for scale one,
indicating the importance of calc lating entrop o er different
scales.

m ltiscale f nctionalit . In contrast, disease states (Fig. 3),
as ell as aging (Fig. 4), ma be defined b a s stained
breakdo n of long-range correlations and loss of informa-
tion [18]. Finall , e note that the MSE method has
potential applications to st d ing a ide ariet of other
ph siologic and ph sical time series data.
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Traditional approaches to meas ring the comple it of biological signals fail to acco nt for the m Itiple time
scales inherent in s ch time series. These algorithms ha e ielded contradictor  ndings hen applied to
real- orld datasets obtained in health and disease states. We describe in detail the basis and implementation of
the m ltiscale entrop (MSE) method. We e tend and elaborate pre io s ndings sho ing its applicabilit to
the ct ations of the h man heartbeat nder ph siologic and pathologic conditions. The method consistentl
indicates a loss of comple it ith aging, ith an erratic cardiac arrh thmia (atrial brillation), and ith a
life-threatening s ndrome (congesti e heart fail re). F rther, these different conditions ha e distinct MSE
c repro les, s ggesting diagnostic ses. The res Its s pport a general comple it -loss theor of aging and
disease. We also appl the method to the anal sis of coding and noncoding DNA seq ences and nd that the
latter ha e higher m ltiscale entrop , consistent ith the emerging ie that so-called j nk DNA seq ences

contain important biological information.

DOI: 10.1103/Ph sRe E.71.021906

|. INTRODUCTION

Ph siologic s stems are reg lated b interacting mecha-
nisms that operate across m ltiple spatial and temporal
scales. The o tp t ariables of these s stems often e hibit
comple ct ations that are not simpl d e to contamina-
ti e noise b t contain information abo t the nderl ing
d namics.

T o classical approaches to time series anal sis are re-
lated to deterministic and stochastic mechanisms. A f nda-
mental nderpinning of the former approach is Takens theo-
rem [1,2], hich states that it is possible to reach f Il
kno ledge of a high dimensional deterministic s stem b
obser ing a single o tp t ariable. Ho e er, since e peri-
mental time series, e en hen generated b deterministic
mechanisms, are most likel affected b d namical noise, the
p rel deterministic approach ma be of limited se. Ne er-
theless, for some practical applications, a lo  dimensional
d namics ma be ass med and then the res Its tested for
internal consistenc [3].

The stochastic approach is aimed at q antif ing the sta-
tistical properties of the o tp t ariables and de eloping
tractable models that acco nt for those properties. The diff -
sion process is a classic e ample of ho a stochastic ap-
proach ma contrib te to the nderstanding of a d namical
s stem. Ata macroscopic le el, the diff sion eq ation can
be deri ed from Fick s la and the principle of conser ation
of mass. Alternati el , ata microscopic le el it is possible
to deri e the diff sion eq ation ass ming that each particle
can be modeled as a random  alker, taking steps of length |
inagi endirection ith probabilit p. The theor of Bro n-
ian motion, hich is based on random alk models, together

ith e perimental res Its, contrib ted to the nderstanding
of the atomic nat re of matter.

Time series generated b biological s stems most likel
contain deterministic and stochastic components. Therefore,

1539-3755/2005/71(2)/021906(18)/$23.00 021906-1
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both approaches ma pro ide complementar information
abo t the nderl ing d namics. The method e se in this
paper for the anal sis of ph siologic time series does not
ass me an partic lar mechanism. Instead, o r method is
aimed at comparing the degree of comple it of different
time series. S ch comple it -related metrics [4] ha e poten-
tiall important applications to discriminate time series gen-
erated either b different s stems or b the same s stem
nder different conditions.

Traditional methods q antif the degree of reg larit of a
time series b e al ating the appearance of repetiti e pat-
terns. Ho e er, there is no straightfor ard correspondence
bet eenreg larit , hich can be meas red b entrop -based
algorithms, and comple it . Int iti el , comple it is associ-
ated ith meaningf | str ct ral richness [5], hich, in
contrast to the o tp ts of random phenomena, e hibits rela-
ti el higher reg larit . Entrop -based meas res, s ch as the
entrop rate and the Kolmogoro comple it , gro mono-
tonicall  ith the degree of randomness. Therefore, these
meas res assign the highest al es to ncorrelated random
signals (hite noise), hich are highl  npredictable b t not
str ct rall  comple , and, at a global le el, admit a er
simple description.

Th s, hen applied to ph siologic time series, traditional
entrop -based algorithms ma lead to misleading res Its. For
e ample, the assign higher entrop  al es to certain patho-
logic cardiac rh thms that generate erratic o tp ts than to
health cardiac rh thms that are e q isitel reg lated b
m ltiple interacting control mechanisms. S bstantial atten-
tion, therefore, has been foc sed on de ning a g antitati e
meas rement of comple it that assigns minim m al es to
both deterministic/predictable and ncorrelated random/

npredictable signals [6]. Ho e er, no consens s has been
reached on this iss e.

O r approach to addressing this long-standing problem

has been moti ated b three basic h potheses: (i) the com-
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ple it of a biological s stem re ects its abilit to adapt and
f nction in an e er-changing en ironment; (ii) biological
s stems need to operate across m ltiple spatial and temporal
scales, and hence their comple it is also m lItiscaled; and
(iii) a ide class of disease states, as ell as aging, hich
red ce the adapti e capacit of the indi id al, appear to de-
grade the information carried b o tp t ariables. Th s, loss
of comple it ma be a generic feat re of pathologic d nam-
ics. Accordingl , o rapproach to de ning a comple it mea-
s rement foc ses on g antif ing the information e pressed
b the ph siologic d namics o er m lItiple scales.

Recentl , eintrod ced ane method, termed m ltiscale
entrop (MSE) [7 11]. D e to the interrelationship of en-
trop and scale, hich is incorporated in the MSE anal sis,
the res Its are consistent ith the consideration that both
completel ordered and completel random signals are not
reall comple . In partic lar, the MSE method sho s that
correlated random signals (colored noise) are more comple
than ncorrelated random signals (hite noise). Compared to
traditional comple it meas res, MSE has the ad antage of
being applicable to both ph siologic and ph sical signals of

nite length.

In this paper, e appl the MSE method to the st d of (i)
the cardiac interbeat inter al time series, the o tp t of a ma-
jor ph siologic s stem reg lated b the in ol ntar a to-
nomic ner o s s stem; and (ii) biological codes. First, e
seek to characteri e changes in the comple it of cardiac
d namics d e to aging and disease, d ring both ake and
sleeping periods. This anal sis is a major e tension of o r
pre io s ork [7] that foc sed on application of MSE to a
more limited database. In addition, e address the q estion
of appl ing the MSE method to binar seq ences in order to
st d the comple it of coding ers s noncoding h man
DNA seq ences.

The str ct re of the paper is as follo s. In Sec. Il e
pro ide the mathematical backgro nd for calc lating the en-
trop rate and disc ss its ph sical meaning. We also present
a short description of the appro imate entrop (Ag) and the
sample entrop (Sg) algorithms, hich ha e been idel

sed in the anal sis of short, nois ph siologic time series.
In Sec. Ill, ere ie the MSE method, hich incorporates
the Sg statistics, and disc ss the res Its of appl ing the MSE
method to  hite and 1/f noises. The anal tical calc lations
of Sg for both t pes of noises are presented in Appendi A.
In Sec. IV, e appl the MSE method to a cardiac interbeat
inter al database comprising recordings of health s bjects,
s bjects ith atrial brillation, an erratic cardiac arrh thmia,
and s bjects ith congesti e heart fail re. We address the
q estion of g antif ing the information in MSE ¢ r es for
possible clinical se. We f rther disc ss the effects of o tli-
ers, hite noise s perimposed on a ph siologic time series,
and nite sample freq enc  al esin Appendi B. In Sec.V,

e appl the MSE method to binar seq ences of arti cial
and biological codes, aimed at q antif ing the comple it of
coding and noncoding DNA seq ences. Technical aspects of
appl ing the MSE method to s ch discrete seq ences are
described in Appendi C. Section VI presents concl sions.
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1. BACKGROUND

The entrop  H(X) of a single discrete random ariable X
is a meas re of its a erage ncertaint . Shannon s entrop
[12] is calc lated b the eq ation

HX)= 2 p(logp( = Ellogp( )], (1)
)
here X represents a random ariable ith a set of al es ®
and probabilit mass f nction p( )=P{X= j}, i€ ®,and E
represents the e pectation operator. Note that p log p=0 if
p=0.

For a time series representing the o tp t of a stochastic
process, that is, an inde ed seq ence of n random ariables,
{Xi}={Xy,..., X}, ith a set of al es Oy,...,0,, respec-
ti el , and X; € ©;, the joint entrop is de ned as

Hy= HOXG, Xgr 01 Xg)
= 2 2 pCaee Ogp( gy 0, (2

1€0; €6,

here p( 1,..., n)=P{X1= 1,...,X,= .} is the joint prob-
abilit for the n ariables Xy,...,X.

B appl ing the chain r le to Eq. (2), the joint entrop
can be ritten as a s mmation of conditional entropies, each
of hich is a non-negati e q antit ,

n

Ho = 2 HOGIX; 1,00 X0). 3

i=1

Therefore, one concl des that the joint entrop is an increas-
ing f nction of n.

The rate at  hich the joint entrop gro s ithn, i.e., the
entrop rate h, is de ned as

h= Iimm. (4)
n—we N

For stationar ergodic processes, the e al ation of the rate
of entrop has pro ed to be a er sef | parameter
[2,513 17].

Let s consider a D-dimensional d namical s stem. S p-
pose that the phase space of the s stem is partitioned into
h perc bes of content ? and that the state of the s stem is
meas red at inter als of time &. Let p(ky,ks,...,k,) denote
the joint probabilit that the state of the s stem is in the
h perc be k; at t=4, in the k, at t=24, and in the h perc be
k, at t=né. The Kolmogoro -Sinai (KS) entrop is de ned
as

1
Hys= lim lim lim — > p(Ky, ....kp)log p(ky, ..., ky)

520 =0 NG "1

1
=1lim lim lim—H,. (5)
80 e—0 n—oe
For stationar processes [18], it can be sho n that
H
Iimf: mHXaXq 1., X). (6)
oo

n—o

Then, b the chain r le, it is straightfor ard to sho that
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Hgs = lim lim lim(Hy.p  Hp). 7
60 e—0 n—x

The state of a s stem at a certain instant t; is partiall
determined b its histor , t;,t,,...,t; ;. Ho e er, each ne
state carries an additional amo nt of ne information. The
KS entrop meas res the mean rate of creation of informa-
tion, in other ords, the decrease of ncertaint at a recei er
b kno ing the c rrent state of the s stem gi en the past
histor .

N mericall , onl entropies of nite order n can be com-
p ted. As soon as n becomes large ith respect to the length
of a gi en time series, the entrop H, is nderestimated and
deca s to ard ero. Therefore, Eq. (7) is of limited se to
estimate the entrop of nite length real- orld time series.
Ho e er, se eral form las ha e been proposed in an attempt
to estimate the KS entrop ith reasonable precision. Grass-
berger and Procaccia [15] s ggested characteri ing chaotic
signals b calc lating the K, entrop , hichisalo erbo nd
of the KS entrop .

Let {X}={1,..-, is..., N} represent a time series of
length  N. Consider the m-length  ectors: (i)
={ i, is1o-eos pm b 1SISN o m+1. Let n'(r) represent

the n mber of ectors ,(j) that are close to the ector (i),

i.e., the n mber of ectors that satisf d[ (i), n()]<r,
here d is the E clidean distance. C{(r)=n{(r)/(N m+1)

represents the probabilit thatan ector ,(j) is close to the
ector (). The a erage of the C{", C™r)=1/(N m

+1)=N ™CM(r), represents the probabilit that an t o
ectors are ithin r of each other. K, is de ned as

K, = lim lim lim  In[C™(r) C™(r)]. (8)
N—® m—® r—0
Follo ing the same nomenclat re, Eckmann and R elle
(ER) [2] de ned the f nction @M(r)=1/(N m
+1)=N.™1n CM(r), considering the distance bet een t o
ectors as the ma im m absol te difference bet een their
components:  d[ (i), m(i)]=ma {| (i+k) (j+k)|:0=<k
m 1} Note that O™L(r) d™(r)
~3N ™n[CM(r)/C™(r)], represents the a erage of the
nat ral logarithm of the conditional probabilit that se-
q ences that are close to each other for m consec ti e data
points il still be close to each other hen one more point is
kno n. Therefore, Eckmann and R elle s ggested calc lat-
ing the KS entrop as
Her = lim lim lim[®™(r) ®™(r)]. 9)
N—o m—o r—0
Altho gh this form la has been sef | in classif inglo -
dimensional chaotic s stems, it does not appl to e perimen-
tal data since the res It is in nit for a process ith s per-
imposed noise of an magnit de [19]. For the anal sis of
short and nois time series, Pinc s [17] introd ced a famil
of meas res termed appro imate entrop , Ag(m,r), de ned
as

Ag(m,r) = Nlirrl[cl’”‘(r) ™). (10)

Ag is estimated b the statistics,
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Ag(m,r,N) = ®"(r)  d™(r). (11)

Ag as not intended as an appro imate al e of ER en-
trop . Rather, Ag is a reg larit statistic. It applies to real-
orld time series and, therefore, has been idel sed in
ph siolog and medicine [4]. Lo er Ag al es are assigned
to more reg lar time series hile higher Az al es are as-
signed to more irreg lar, less predictable, time series.
Recentl , a modi cation of the Ag algorithm, sample en-
trop (Sg) [20], has been proposed. Sg has the ad antage of
being less dependent on time series length, and sho ing rela-
ti e consistenc o er a broader range of possible r,m, and N
al es. Starting from the de nition of the K, entrop , Rich-
man and Moorman [20] de ned the parameter

Um+1(r)
Se(m,r) = li | , 12
e(m,r) am e (12)
hich is estimated b the statistic
Um+1(r)
SE(m,r,N): anT(r)' (13)

The differences bet een U™(r) and C™(r), U™(r) and
C™(r) res It from (1) de ning the distance bet eent o ec-
tors as the ma im m absol te difference bet een their com-
ponents; (2) e cl ding self-matches, i.e., ectors are not
compared to themsel es; and (3) gi en a time series ith N
data points, onl the rstN m ectors of lengthm, (i), are
considered, ens ring that, for L<i=<N m, the ector (i)
of length m+1 is also de ned. Sg is precisel eq al to the
negati e of the nat ral logarithm of the conditional probabil-
it that seq ences close to each other for m consec ti e data
points ill also be close to each other hen one more point
is added to each seq ence. Fig re 1 ill stratesho Sg al es
are calc lated.

Note that
N m
1 n"
Ag(m,r,N) = —— > In—" 14
el ) N mi;{ nl (14)
and
N m
Y I,]Irl'n
Se(m,r,N) = Ing——, (15)
E nrm+1
1

i=1

here n/™ differs from n" to the e tend that for Sg self-
matches are not co nted (i#j) and 1<i<N m.

The difference bet een Ag and Sg can be related to the
Ren i entropies, Sg(q), hich are de ned b Sy(q)
=In(Z;p{)/(1 q). Az appro imates the Ren i entrop of or-
der g=1 (the s al Shannon entrop ) and Sg the Ren i en-
trop of order q=2. The ad antage of the latter is that the
estimator [Eq. (15)] is nbiased [21].

Both Sg and Az meas re the degree of randomness (or
in ersel , the degree of orderliness) of a time series. Ho -
e er, as noted, there is no straightfor ard relationship be-
t een reg larit , meas red b entrop -based metrics, and
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FIG. 1. Asim lated time series [1],..., [N]issho ntoill s-
trate the proced re for calc lating sample entrop (Sg) for the case
m=2 and a gi en positi e real al e r. Dotted hori ontal lines
aro nd data points [1], [2], and [3] represent [1] r, [2] T,
and [3] r,respecti el . T o data points match each other, that is,
the are indisting ishable, if the absol te difference bet een them
is <r. T picall , r aries bet een 10% and 20% of the time series
SD. The s mbol O is sed to represent data points that match the
data point [1]. Similarl , the s mbols X and A are sed to repre-
sent data points that match the data points [2] and [3], respec-
ti el . Consider the t o-component O-X template seq ence
( [1], [2]) and the three-component O - X - A template seq ence
( [1], [2], [3)). For the segment sho n, there are t 0 O-X se-
q ences, ( [13], [14]) and ( [43], [44]), that match the template
seq ence ( [1], [2]), b tonl one O-X-A seq ence that matches
the template seq ence ( [1], [2], [3]). Therefore, in this case, the
n mber of seq ences matching the t o-component template se-
g ences ist o and the n mber of seq ences matching the three-
component template seq ence is 1. These calc lations are repeated
for the ne t t o-component and three-component template se-
q ence, hich are ( [2], [3]) and ( [2], [3], [4]), respecti el .
The n mber of seq ences that match each of the t o- and three-
component template seq ences are again s mmed and added to the
pre io s al es. This proced re is then repeated for all other
possible  template seq ences, ( [3], [4], [5)),...,( [N-2],

[N-1], [N]), to determine the ratio bet een the total n mber of
t o-component template matches and the total n mber of three-
component template matches. Sg is the nat ral logarithm of this
ratio and re ects the probabilit that seq ences that match each
other for the rstt o data points ill also match for the ne t point.

comple it [22]. An increase in entrop is s all b t not
al a s associated ith an increase in comple it . For e -
ample, higher entrop  al es are assigned to randomi ed s r-
rogate time series than to the original time series e en hen
the original time series represent the o tp t of comple
d namics ith correlational str ct res on m lItiple spatio-
temporal scales. Ho e er, the process of generating s rro-
gate data is designed to destro correlations and, conse-
q entl , degrades the information content of the original
signal. In fact, entrop -based metrics are ma imi ed for ran-
dom seq ences, altho gh it is generall accepted that both
perfectl ordered and ma imall disordered s stems possess
no comple str ct res [23]. A meaningf | ph siologic com-
ple it meas re, therefore, sho Id anish for theset oe -
treme states.

Of related note, hen applied to ph siologic data, both Ag
and Sg algorithms assign higher entrop  al es to certain
pathologic time series than to time series deri ed from free-
r nning ph siologic s stems nder health conditions [24].
Ho e er, pathologic time series represent the o tp t of less
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FIG. 2. Schematic ill stration of the coarse-graining proced re.
Adapted from Ref. [8].

adapti e (i.e., more impaired), and therefore, pres mabl ,
less comple s stems [25,26]. One reason for obtaining these
nonph siologic res Its is the fact that Ag and Sg are based
on a single scale. We note that both the KS entrop and the
related Ag parameters depend on a f nction s one-step differ-
ence (e.g., Hpsy H,) and re ect the ncertaint of the ne t
ne point gi en the past histor of the series. Therefore,
these meas res do not acco nt for feat res related to str c-
t re and organi ation on scales other than the shortest one.

For ph sical s stems, Zhang [23,27] proposed a general
approach to take into acco nt the information contained in
m ltiple scales. Zhang's comple it meas re is a s m of
scale-dependent entropies. It has the desirable propert of

anishing in the e treme ordered and disordered limits, and
isan e tensi e q antit . Ho e er, since it is based on Shan-
non s de nition of entrop , Zhang s method req ires a large
amo nt of almost noise-free data, in order to map the data to
a discrete s mbolic seq ence ith s f cient statistical acc -
rac . Therefore, it presents ob io s limitations hen applied
to free-r nning ph siologic signals that t picall ar con-
tin o sl and ha e nite length.

To o ercome these limitations, e [7] recentl introd ced
the m lItiscale entrop (MSE) method, applicable both to
ph sical and ph siologic time series. O r method is based on
Zhang s and Pinc s s approach.

I11. MULTISCALE ENTROPY (MSE) METHOD

Gi en a one-dimensional discrete time  series,
{1,y ir.ers b € CONSEr ct consec ti e coarse-grained
time series, { ("}, corresponding to the scale factor, 7. First,

e di ide the original times series into nono erlapping in-
do s of length 7; second, e a erage the data points inside
each indo (Fig. 2). In general, each element of a coarse-
grained time series is calc lated according to the eq ation
Iks
= Y . 1<js<NI~ (16)
Ti=(j 1)+l

w1

For scale one, the time series { (V} is simpl the original
time series. The length of each coarse-grained time series is
eq al to the length of the original time series di ided b the
scale factor, 7.

Finall , e calc late an entrop meas re (Sg) for each
coarse-grained time series plotted as a f nction of the scale
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factor 7. We call this proced re m ltiscale entrop (MSE)
anal sis.

The MSE ¢ r es are sed to compare the relati e com-
ple it of normali ed time series (same ariance for scale
one) based on the follo ing g idelines: (1) if for the major-
it of the scales the entrop  al es are higher for one time
series than for another, the former is considered more com-
ple than the latter; (2) a monotonic decrease of the entrop

al es indicates the original signal contains information onl
in the smallest scale.

Zhang de ned comple it as the integral of all the scale-
dependent entropies: K=f§‘d7H(r), hich for a discrete sig-
nal co Id be estimated b K:ZiNle(i)(Nﬂao). D e to the

nite length of real- orld time series, entrop can onl be
calc lated for a nite range of scales. The s m to in nit is
not feasible. Since different sets of entrop  al es can ield
the same K al e, e foc s on the anal sis of the MSE
¢ r esinstead of assigning a single comple it al e to each
time series. F rther, for application to biological s stems, the
MSE ¢ r e ma pro ide sef | insights into the control
mechanisms nderl ing ph siologic d namics o er different
scales. We note, ho e er, that an appro imation of K for
scales bet een one and t ent f rther s pports the concl -
sions e present in this paper.

Unless other ise speci ed, the al es of the parameters

sed to calc late Sg are N=2x10% m=2, and r=0.15.

The al e of the parameter r is a percentage of the time
series SD. This implementation corresponds to normali ing
the time series. As a conseq ence, Sg res Its do not depend
on the ariance of the original time series, i.e., the absol te

al e of the data points, b t onl on their seq ential order-
ing.
In general, ho e er, the entrop meas res re ect both the

ariance of a time series and its correlation properties. To
ill strate this point, e e amine t o special cases here
these t o effects can be isolated. Case (1): Consider t o

ncorrelated random ariables, X and Y, ith set of al es
{1 2,-.c ny and { 1, 2,..., wm}, respecti el . Ass ming
that all al es are eq all probable, p( ;)=1/N, the entrop
of the random ariables X is H(X)= =N,1/Nlog1/N
=logN. Similarl , H(Y)=logM. If N>M, then H(X)
>H(Y). Therefore, for the same le el of resol tion, the
larger the set of alphabet of a random ariable, the larger its

ariance and the entrop  al e. Case (2): Consider a periodic
signal ith ariance |a| and a random signal ith ariance
|b], s ch that |a|>|b|. The entrop of a periodic signal is
ero, since each data point occ rs ith probabilit 1. There-
fore, the entrop of a periodic signal is ne er larger than the
entrop of a random signal regardless of the ariance of the
signals.

With the e ception of s ch er simple cases, it is not
possible to  eight separatel the contrib tions of the SD and
the correlation properties to the entrop  al e. Signals ith
higher ariabilit and those that are more random tend to be
more entropic. Ne ertheless, the act al entrop  al e res Its
from a comple combination of these t o factors.

In the MSE method, r is set at a certain percentage ( s -
all  15%) of the original time series SD, and remains con-
stant for all scales [10,28]. We do not recalc late r for each
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FIG. 3. MSE anal sis of 30 sim lated Ga ssian distrib ted
(mean ero, ariance one) hite and 1/f noise time series, each
ith 3 10* data points. S mbols represent mean al es of entrop
for the 30 time series and error bars the SD, hich in a erage is
0.05 for hite noise and 0.02 for 1/f noise. Lines represent n meri-
cal e al ation of anal tic Sg calc lation. Note that the differences
bet een the mean al es of Sg and the corresponding n merical
al es are less than 1%. SD is larger for 1/f noise time series
beca se of nonstationarit . Adapted from Ref. [7]. (See Appendi

A)

coarse-grained time series. After the initial normali ation,
s bseq ent changes of the ariance d e to the coarse-
graining proced re are related to the temporal str ct re of
the original time series, and sho Id be acco nted for b the
entrop meas re. The initial normali ation, ho e er, ins res
that the MSE  al es assigned to t o different time series are
not a tri ial conseq ence of possible differences bet een
their ariances b t res It from different organi ational str c-
t res.

We rst applied the MSE method to sim lated hite and
1/f noises and compared the n merical res Its ith the en-
trop al es calc lated anal ticall (Appendi A). Fig re 3
presents the res Its. For scale one, a higher al e of entrop
is assigned to  hite noise time series in comparison ith 1/f
time series. Ho e er, hile the al e of entrop for the
coarse-grained 1/f series remains almost constant for all
scales, the al e of entrop for the coarse-grained hite
noise time series monotonicall decreases, s ch that for
scales >4 it becomes smaller than the corresponding al es
for 1/f noise. This res It is consistent ith the fact that,

nlike hite noise, 1/f noise contains comple str ct res
across m Itiple scales [23,27]. Note that in the case of hite
noise, as the length of the indo  sed for coarse-graining
the time series increases (i.e., the resol tion decreases), the
a erage al einside each indo con ergestoa ed al e
since no ne str ct res are re ealed on larger scales. Conse-
q entl , coarse-grained time series are progressi el
smoothed o t and the standard de iation monotonicall
decreases ith the scale factor. Therefore, the monotonic de-
crease of entrop ith scale, hich mathematicall res lts
from the decrease of standard de iation, re ects the fact that
hite noise has information onl on the shortest scale. In
contrast, for 1/f noise signals the a erage al esofthe c-
t ations inside each indo do not con erge to a gi en
al e. Inother ords, the statistical properties of ct ations
ithin a indo (e.g., 10 data points) are not the same as
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those of the ne t indo beca se ne information is re-
ealed at all scales. The MSE ses the a erage al e of the
ct ations as the representati e statistical propert for each
block and meas res the irreg larit of the block-to-block d -
namics.

The discrepanc bet een the sim lation and the anal ti-
cal res lIts is less than 0.5%. In Appendi B, e disc ss ho
the time series length, N, and the al es of parameters r and
m affect Sg res Its for both hite and 1/f noise time series.
We f rther disc ss the effects of ncorrelated noise and o t-
liers on MSE res Its of cardiac interbeat inter al time series.

IV. MSE ANALY SIS OF CARDIAC INTERBEAT INTERVAL
TIME SERIES

We ne t appl the MSE method to the cardiac interbeat
(RR) inter al time series deri ed from 24 ho r contin o s
electrocardiographic (ECG) Holter monitor recordings of
health s bjects, s bjects ith congesti e heart fail re, a
life-threatening condition, and s bjects ith atrial brilla-
tion, a major cardiac arrh thmia.! We test the h pothesis that

nder free-r nning conditions, health interbeat inter al d -
namics are more comple than those ith patholog d ring
both da time and nightime ho rs.

The data for the normal control gro p ere obtained from
24 ho r Holter monitor recordings of 72 health s bjects, 35
men and 37 omen, aged 54.6 16.2 ears (mean SD),
range 20-78 ears. ECG data ere sampled at 128 H . The
data for the congesti e heart fail re gro p ere obtained
from 24 ho r Holter recordings of 43 s bjects (28 men and
15 omen) aged 55.5 11.4 ears (mean SD), range 22-78

ears. Ne York Heart Association (NYHA) f nctional clas-
si cation [30] is pro ided for each s bject: 4 s bjects ere
assigned to class |, 8 to class Il, 17 to class Ill, and 14 to
class I11-1V. Fo rteen recordings ere sampled at 250 H and
29 recordings ere sampled at 128 H . The data for the atrial

brillation gro p ere obtained from 10 ho r Holter record-
ings sampled at 250 H of nine s bjects. Datasets ere |-
tered to e cl de artifacts, premat re entric lar comple es,
and missed beat detections (see Appendi B). Of note, the
incl sion of the premat re entric lar comple es does not
q alitati el change o r anal sis.

Representati e time series of health , congesti e heart
fail re, and atrial brillation gro p s bjects are presented in
Fig. 4.

When disc ssing the MSE res lts of cardiac interbeat in-
ter al time series, e refer to large and small time scales

hen the scales are larger or smaller than one t pical respi-
rator ¢ cle length, that is, appro imatel e cardiac beats.

In Fig. 5, e present the res Its of the MSE anal sis of
the RR inter al time series for the three gro ps of s bjects.
We obser e three different t pes of beha iors: (i) The en-
trop meas re for time series deri ed from health s bjects
increases on small time scales and then stabili es to a rela-
ti el constant al e. (ii) The entrop meas re for time se-

LAll data anal ed here are a ailable at http://ph sionet.org and
ha e been described in Ref. [29].
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FIG. 4. Representati e interbeat inter al time series from (a)
health indi id al (sin srh thm), (b) s bject ith congesti e heart
fail re, and (c) s bject ith atrial brillation, a highl erratic car-
diac arrh thmia.

ries deri ed from s bjects ith congesti e heart fail re
marked| decreases on small time scales and then grad all
increases. (iii) The entrop meas re for time series deri ed
from s bjects ith atrial brillation [31] monotonicall de-
creases, similar to hite noise (Fig. 3).

For scale one, hich is the onl scale considered b tra-
ditional single-scale based comple it methods, the en-
trop assigned to the heartbeat time series of s bjects ith
atrial brillation and those ith congesti e heart fail re is
higher than the entrop assigned to the time series of health

24
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FIG. 5. MSE anal sis of RR time series deri ed from long-term
ECG recordings of health s bjects in normal sin s rh thm, those
ith congesti e heart fail re (CHF) in sin srh thm, and those ith
atrial  brillation (AF). S mbols represent the mean al es of en-
trop for each gro p and bars represent the standard error (SE
=SD/yn), here nis the n mber of s bjects). Parameters to calc -
late Sg are m=2 and r=0.15. Time series length is 2 < 10* beats.
The Sg al es from health s bjects are signi cantl (t-test, p
< 0.05) higher than from CHF and AF s bjects for scales larger
than scale 2 and scale 20, respecti el .
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s bjects. In contrast, for s f cientl large scales, the time

series of health s bjects are assigned the highest entrop
al es. Th s, the MSE method indicates that health d nam-
ics are the most comple , contradicting the res Its obtained
sing the traditional Sg and Ag algorithms.

The time series of s bjects ith AF e hibit s bstantial

ariabilit in beat-to-beat  ct ations. Ho e er, the mono-
tonic decrease of the entrop ith scale re ects the degrada-
tion of the control mechanisms reg lating heart rate on larger
time scales in this pathologic state.

The largest difference bet een the entrop al es of
coarse-grained time series from congesti e heart fail re and
health s bjects is obtained for time scale 5. On small time
scales, the difference bet een the pro les of the MSE ¢ 1 es
for theset o0 gro ps ma be d e to the fact that the respira-
tor mod lation of heart rate (respirator sin s arrh thmia)
has higher amplit de in health s bjects than in's bjects ith
congesti e heart fail re. Since entrop is a meas re of reg -
larit  (orderliness), the higher the amplit de of the respira-
tor mod lation, the lo er the entrop al es tend to be.
Ho e er, the coarse-graining proced re lters o t the peri-
odic respirator -related heart rate oscillations. Therefore,
coarse-grained time series from health s bjects on large
time scales are likel more irreg lar (and are assigned higher
entrop  al es) than the original time series.

For congesti e heart fail re s bjects, the entrop of
coarse-grained time series decreases from scales 1 3 and
then progressi el increases. This res It s ggests that for
these s bjects, the control mechanisms reg lating heart rate
on relati el short time scales are the most affected. Ho -
e er, this nding co Id also res It from the meas rement

ncertaint of the interbeat inter als d e to the nite sample
freq enc . Since time series from s bjects ith congesti e
heart fail re ha e, in general, lo er ariance than time series
from health s bjects, the signal-to-noise ratio tends to be
lo er for datasets from heart fail re s bjects. We note that
the MSE coarse-graining proced re progressi el eliminates
the ncorrelated random components s ch that the entrop of
hite noise coarse-grained time series monotonicall de-
creases ith scale (Fig. 3). Therefore, the monotonic de-
crease of the entrop  al es ith heart fail re o er short time
scales ma be related to the relati el lo signal-to-noise
ratio.

We also nd that the as mptotic al e of entrop ma not
be s f cient to differentiate time series that represent the
o tp t of different d namical processes. As seen in Fig. 5,
for time scale 20, the al e of the entrop meas re for the
heart fail re (sin s rh thm) and atrial brillation time series
is the same. Ho e er, these time series represent the o tp t
of er different t pes of cardiac d namics. Therefore, not
onl the speci ¢ al es of the entrop meas re b t also their
dependence on time scale need to be taken into acco nt to
better characteri e the ph siologic process.

Ne t, to assess the effects of acti it le el, e compare
the comple it of the RR inter als time series d ring sleep
and ake periods for the different s bject gro ps. Using the
24 h heartbeat inter al time series of health and congesti e
heart fail re s bjects, the sleep and ake datasets ere then
obtained b e tracting the segments of 2 10* consec ti e
data points (~5 h) ith highest and lo est heart rate, re-
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FIG. 6. MSE anal sis of RR time series deri ed from 24 h ECG
recordings of 27 health o ng s bjects, aged 34.5 7.3 ears
(mean SD), range 20 - 50 ears, 45 health elderl s bjects, aged
70 3.97 ears, range 66 - 75 ears, and 43 congesti e heart fail re
(CHF) s bjects, aged 55 11.6 ears, range 22 - 78 ears. (a) Wak-
ing period. For all scales the Sg al es from health o ngs bjects
are signi cantl (t-test, p<<0.05) higher than from CHF s bjects.
The Sg al es from health 0 ng s bjects are signi cantl higher
than from health elderl s bjects for scales larger than scale 1. The
Sg al es from health elderl s bjects are signi cantl (t-test, p
< 0.05) higher than from CHF s bjects for scales bet een scales 5
and 13, incl si el . (b) Sleeping period. Both the Sg al es from
health elderl and health 0 ng s bjects are signi cantl (t-test,
p < 0.05) higher than from CHF s bjects for scales bet een scales 2
and 11, incl si el . The S¢ al es from health o ng s bjects are
signi cantl higher than from health elderl s bjects for scales
shorter than scale 5. S mbols represent the mean al es of entrop
for each gro p and the bars represent the standard error. Parameters
of Sg calc lation are m=2 and r=0.15. Time series length is 2
X 10* beats.

specti el . Fig res 6(a) and 6(b) sho that d ring both the
aking and sleeping periods, the highest entrop  al es on
most time scales are assigned, in descending order, to the
coarse-grained time series deri ed from health o ngs b-
jects, health elderl s bjects, and congesti e heart fail re
s bjects. These res lts f rther s pport the concept that nder
free-r nning conditions, the cardiac d namics of health
0 ng s bjects are the most comple and are consistent ith
the h pothesi ed loss of comple it ith aging and disease
[24].
Despite the fact that the entrop ~ al es for health elderl
s bjects are lo er than those for health o ng s bjects, the
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pro les of MSE c r es for both gro ps are similar, in par-
tic lar o er large time scales. Indeed, d ring sleep, a period
of minimal acti it , the difference bet een the entrop  al-
es of both gro ps is signi cant o er onl small time scales.
These res Its are consistent ith the kno n loss of high-
freq enc mod lation of the cardiac rh thm ith age [32],
and s ggest that the control mechanisms operating o er
small time scales, incl ding the paras mpathetic branch of
the a tonomic ner o s s stem, are the most affected ith
aging. The monotonic decrease in entrop on large time
scales for both o ng and elderl gro ps indicates that the
coarse-grained time series become progressi el more reg -
lar (less comple ) than those corresponding to shorter time
scales, hich is compatible ith a pre io s st d [33] re-
porting ared ction in long-range correlations in health s b-
jects d ring the sleeping period.

The MSE res lIts for the aking and sleeping periods of
each gro p of s bjects are sho n in Fig. 7. For both o ng
and elderl health s bjects, the pro les of the MSE ¢ r es
corresponding to the aking and sleeping periods are q ali-
tati el different from each other [Figs. 7(a) and 7(b)]. For
s bjects ith congesti e heart fail re, ho e er, there is onl
a shift of the entrop  al es b t not a signi cant change in
the pro le of the MSE ¢ r es [Fig. 7(c)]. Th s, differences
bet een the da  ers s night d namics of s bjects ith a
se ere cardiac patholog are less marked than for health
s bjects. This loss of differentiation in the comple it of
sleep/ ake d namics ma be a sef I ne inde of red ced
adapti e capacit .

F rther, e fo nd that, contrar to the res Its obtained for
health 0 ng s bjects, in health elderl and congesti e
heart fail re s bjects, the coarse-grained time series obtained
from the aking period ha e lo er entrop than those ob-
tained from the sleeping period. To the e tent that aging and
disease degrade adapti e capacit , en ironmental stim li
ma e ceed the s stems reser e. This sit ation o Id be
eq i alent to hat might occ r if a o ng indi id al ere
s bject to prolonged ph sical or other stress thro gho t the
da time ho rs.

Finall , to assist in clinical classi cation, e e tracted
t o simple feat res of MSE ¢ r es, the slopes for small and
large time scales, i.e., the slopes of the ¢ r es de ned b Sg

al es bet een scale factors 1 and 5, and scale factors 6 and
20, respecti el . Res Its for the health and congesti e heart
fail re gro ps corresponding to the sleeping period are pre-
sented in Fig. 8. There is a good separation bet eenthet o
gro ps. Considering other feat res of the MSE c r es, in
addition to these slopes, ma f rther impro e the separation.
Alternati el , methods deri ed from pattern recognition
techniq es, e.g., Fisher s discriminant, ma also be sef | for
clinical discrimination [9].

V. MSE ANALYSIS OF ARTIFICIAL AND BIOLOGICAL
CODES

In all cells, from microbes to mammals, proteins are re-
sponsible for most str ct ral, catal tic, and reg lator f nc-
tions. Therefore, the n mber of protein-coding genes that an
organism makes se of co Id be an indicator of its degree of
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FIG. 7. MSE anal sis of RR time series deri ed from 24 h ECG
recordings d ring aking and sleeping periods. (a) Yo ng health
s bjects. The Sg al es for the aking period are signi cantl
(t-test) higher (p<<0.05) than for the sleeping period on scales
larger than scale 7. (b) Elderl health s bjects. The Sg al es for
the sleeping period are signi cantl (t-test) higher (p<0.05) than
for the aking period on scales shorter than scale 16. (c) Conges-
ti e heart fail re s bjects. The Sg al es for the sleeping period are
signi cantl (t-test) higher (p<0.05) than for the aking period on
all scales b tscale 1. S mbols represent mean al es of entrop for
each gro p and the bars represent the standard error. Parameters of
Se calc lation are m=2 and r=0.15. Time series length is 2 X 10*
beats.

comple it . Ho e er, se eral obser ations contradict this
reasoning [34,35].
Large regions of DNA, hich in h mans acco nt for
abo t 97% of the total genome, do not code for proteins and
ere pre io sl tho ght to ha e no rele ant p rpose. These
regions ha e been referred to as j nk DNA or gene
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FIG. 8. Scatter plot of the slope of the MSE ¢ r es bet een
scale factors 6 and 20 s the slope of the MSE ¢ r es bet een scale
factors 1 and 5, for health and congesti e heart fail re (CHF)
gro ps d ring the sleeping period. For both gro ps, s mbols ith
error bars represent the mean of -a is al es, and the error bars the
corresponding SD. The gro ps are ell separated (p <0.005).

deserts. Ho e er, these noncoding seq ences are starting

to attract increasing attention as more recent st dies s ggest
that the ma ha e an important role in reg lation of tran-
scription, DNA replication and chromosomal str ct re, pair-
ing, and condensation.

Detrended  ct ation anal sis [37 39] re ealed that non-
coding seq ences contained long-range correlations and pos-
sessed str ct ral similarities to nat ral lang ages, s ggesting
that these seq ences co Id in fact carr important biological
information. In contrast, coding seq ences ere fo nd to be
more like a comp ter data le than a nat ral lang age.

The biological implications of the presence of long-range
correlations in noncoding seq ences, their origin, and their
nat re are still being debated. A dit et al. [40,41] ha e in-

estigated the relation bet een long-range correlations and
the str ct re and d namics of n cleosomes. Their res Its
s ggest that long-range correlations e tending from 10 to
200 bp are related to the mechanisms nderl ing the rap-
ping of DNA in the n cleosomal str ct re.

Gene reg lator elements or enhancers are t pes of f nc-
tional seq ences that reside in noncoding regions. Until re-
centl , enhancers ere tho ght to be located near the genes
that the reg late. Ho e er, s bseq ent in i o st dies
[42,43] ha e demonstrated that enhancers and the genes to

hich the are f nctionall linked ma be separated b more
than tho sands of bases. These res lts reinforce earlier e i-
dence that the noncoding seq ences contain biological infor-
mation and f rther s pport the notion that there are se eral
la ers of information in genomic DNA.

In this section, e appl the MSE method to the anal sis
of the comple it of both coding and noncoding DNA se-
q ences of h man chromosomes.

Beca se of possible parallelisms bet een arti cial and
biological codes, e rst considered t o e amples of arti -
cial lang age seq ences: the compiled ersion of the LINUX
Operating S stem, an e ec table comp ter program, and a
compressed none ec table comp ter data le, hich can
both be anal ed as binar seq ences. Altho gh both les
contain sef | information, the str ct re of that information
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FIG. 9. MSE res lIts for binar  les of a comp ter e ec table
program (Linux kernel) and a compressed data le. The original
binar le hasonl t os mbols, 0and 1. Ho e er, the n mber of
s mbols in coarse-grained seq ences increases ith the scale factor,

hich introd ces a characteristic artifact on the MSE ¢ r es. In
order to a oid this artifact, instead of the original seq ences, e
anal e a deri ed seq ence, hich is constr cted as follo s: e
di ide the original seq ence into consec ti e nono erlapping seg-
ments, each ith 128 data points, and then calc late the n mber of
1s(0s) ithin each segment. Some str ct ral information is lost
since the proced re is not a one-to-one mapping. The deri ed se-
q ences are e pected to be more reg lar than the original ones.
Ho e er, this proced re does not alter the concl sions dra n from
o ranal sis.

is er different. The seq ence deri ed from the e ec table
program e hibits long-range correlations [38], hile the se-
q ence deri ed from the data le does not. These res Its
indicate that the comp ter program, hich e ec tes a series
of instr ctions and likel contains se eral loops r nning in-
side each other, possesses a hierarchical str ct re, in contrast
to the comp ter data le. Therefore, the former is e pected to
be more comple than the latter.

When applied to discrete seq ences (binar codes), the
MSE res Its present a t pical artifact d e to the dependence
of the entrop  al es on the si e of the seq ence alphabet,

hich e disc ss in Appendi C.

MSE anal sis of the nonbiological codes re eals (Fig. 9)
the follo ing. (i) For scale one, the seq ence deri ed from
the data le is assigned a higher entrop  al e than the se-
q ence deri ed from the e ec table program. (ii) Bet een
scales 2 and 6, the Sg meas re does not separate the coarse-
grained seq ences of thet o les. (iii) For scales larger than
scale 6, the highest entrop  al es are assigned to coarse-
grained seq ences deri ed from the e ec table program le.
F rthermore, the difference bet een Sg al es assigned to
coarsegrained seq ences of the e ec table le and the com-
p ter data le increases ith scale factor. These res Its indi-
cate, as h pothesi ed, that the str ct re of the e ec table le
is more comple than the str ct re of the data le. Of note,
con entional (single scale) Sg and Ag algorithms applied to
seq ences of arti cial lang ages fail to meaningf Il q an-
tif their o erall comple it .

Finall , eappl the MSE method to the anal sis of DNA
seq ences, likel one of the most comple nat ral informa-
tion databases.

The DNA b ilding nits are fo r n cleotides. T o of
them contain a p rine base, adenine (A) or g anine (G), and
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FIG. 10. MSE res lIts for fo r coding, nine noncoding DNA
seq ences from h man chromosome 22 and 30 binar random time
series. All coding seq ences ith more than identi ed 4 X 10° bp

ere selected. The longest coding seq ences has 6762 bp. All non-
coding seq ences ith more than 6000 and fe er than 6050 bp

ere selected. The length of the random seq ences is 6000 data
points. The s mbols and the error bars represent the Sg mean al es
and SD, respecti el . D etoat pical artifact that affects the MSE
res lts of discrete seq ences (Appendi C), onl the entrop al es
for scales 1, 5, 9, 13, and 17 are plotted. Note the higher comple it
of the noncoding s coding seq ences (p=0.006 for scale 9). The
lo est entrop al es are assigned to the random ( hite noise:
mean ero, ariance 1) time series mapped to a binar seq ence: 1
if ;>0andO0if ;<O.

the other t o contain a p rimidine base, ¢ tosine (C) or
th mine (T). There are man  a s of mapping the DNA
seq ences to a n merical seq ence that take into consider-
ation different properties of the DNA seq ences. For this
application, e consider the p rine-p rimidine r le [37 39].
Gi en the original DNA seq ence, bases A and G are
mapped to n mber 1, and bases C and T are mapped to
n mber -1.

In Fig. 10, e present the MSE res lts for selected coding
and noncoding h man DNA seq ences. For scales larger
than scale 5, Sg al es for noncoding seq ences are higher
than for coding seq ences. Consistentl , for all scales b t the

rst one, the lo est Sg al es are assigned to coarse-grained
time series deri ed from ncorrelated hite noise mapped to
a binar seq ences. Comparable res Its ere obtained from
the anal sis of coding ers s noncoding seq ences (=4
X 10% bp) of all h man chromosomes. These res Its sho
that the str ct re of noncoding seq ences is more comple
than the str ct re of coding seq ences anal ed here.

These ndings s pport pre io s st dies [37 39] s ggest-
ing a parallelism bet eene ec table comp ter programs and
noncoding seq ences, and data storing les and coding se-
g ences. The also s pport the ie that noncoding se-
q ences contain important biological information. As pointed
o th others [35,36,40,41], biological comple it and phe-
not pe ariations sho Id relate not onl to proteins, hich
are the main effectors of cell lar acti it , b t also to the
organi ational str ct re of the control mechanisms respon-
sible for the net orking and integration of gene acti it .

VI. LIMITATIONS AND FUTURE DIRECTIONS

The MSE method req ires an adeq ate length of data to
pro ide reliable statistics for the entrop meas re on each
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scale. As disc ssed in Appendi B, for sim lated hite and
1/f noises, both the mean al e of Sg and the SD increase as
the length of the time series decreases. Ho e er, for all time
series tested, the consistenc of the res Its as preser ed,
i.e, gi ent o time series, a and b, each ith 3x10* data
points, hene er Sg as higher (lo er) for time series a than
for time series b, the same res It held if onl 1x10° data
points ere considered.

The minim m n mber of data points req ired to appl the
MSE method depends on the le el of accepted ncertaint .
T picall , e se time series ith 2x10* data points for
anal ses e tending p to scale 20, in hich case the shortest
coarse-grained time series has 1 x 10° data points.

Another important consideration is related to nonstation-
arit . To calc late Sg, one hasto  the al e of a parameter
that depends on the time series SD. Therefore, the res Its
ma be signi cantl affected b nonstationarities, o tliers,
and artifacts. As e disc ss in Appendi C, remo ing local
artifacts and a small percentage of o tliers (<2%) does not

s all modif the str ct re of the time series and its related
statistical properties. In contrast, attempts to remo e nonlo-
cal nonstationarities, e.g., trends, ill most likel modif the
str ct re of the time series o er m ltiple time scales.

F rther st dies are needed to constr ct clinicall ~ sef |
indices for monitoring the comple it of biological s stems,
and for de eloping and testing the tilit of comple it mea-
s res designed to q antif the degree of s nchroni ation of
t o time series 0 er m ltiple scales [20].

We note that the cardiac anal ses reported here pertain to
interbeat inter al d namics nder free-r nning conditions.
The high capabilit of health s stems to adapt to a ide
range of pert rbations req ires f nctioning in a m Itidimen-
sional state space. Ho e er, nder stress, the s stem is
forced to ork in a tighter regime. For e ample, d ring
ph sical e ercise, there is a s stained increase in heart rate
and a decrease in the amplit de of the interbeat inter al  c-
t ations in response to an increased demand for o gen and
n trients. The d namics is, therefore, limited to a s bset of
the state space. We anticipate that nder a ariet of stressed
conditions, health s stems ill generate less comple o t-
p ts than nder free-r nning conditions [11].

Finall , the potential applications of the MSE method to
the st d of arti cial and biological codes, ith attention to
the effects of e ol tion on the comple it of genomic se-
g ences, req ire s stematic anal sis.

VII. CONCLUSIONS

The long-standing problem of deri ing sef | meas res of
time series comple it is important for the anal sis of both
ph sical and biological s stems. MSE is based on the obser-

ation that the o tp t of comple s stems is far from the

e trema of perfect reg larit and complete randomness. In-
stead, the generall re eal str ct res ith long-range corre-
lations on mItiple spatial and temporal scales. These m Iti-
scale feat res, ignored b con entional entrop calc lations,
are e plicitl addressed b the MSE method.

When applied to sim lated time series, the MSE method
sho s that 1/f noise time series are more comple than
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hite noise time series. These res Its are consistent ith the
presence of long-range correlations in 1/f noise time series
b tnotin hite noise time series.
Ph siologic comple it is associated ith the abilit of
li ing s stems to adj st to an e er-changing en ironment,

hich req ires integrati e m lItiscale f nctionalit . In con-
trast, nder free-r nning conditions, a s stained decrease in
comple it re ects a red ced abilit of the s stem to f nc-
tion in certain d namical regimes possibl d e to deco pling
or degradation of control mechanisms.

When applied to the cardiac interbeat inter al time series
of health s bjects, those ith congesti e heart fail re and
those ith atrial brillation, the MSE method sho s that
health d namics are the most comple . Under pathologic
conditions, the str ct re of the time series ariabilit ma
change in t o different a s. One d namical ro te to dis-
ease is associated ith loss of ariabilit and the emergence
of more reg lar patterns (e.g., heart fail re). The other d -
namical ro te is associated ith more random t pes of o t-
p ts (e.g., atrial brillation). In both cases, MSE re eals a
decrease in s stem comple it .

Finall , e emplo ed the MSE method to compare the
comple it of an e ec table comp ter program ers s a
compressed none ec table comp ter data le, and selected
coding ers s noncoding DNA seq ences. We fo nd that the
e ec table comp ter program has higher comple it than the
none ec table comp ter data le, and similarl that the non-
coding seq ences are more comple than the coding se-
q ences e amined. O rres lts s pport recent in itro and in

i o st dies s ggesting, contrar to the j nk DNA theor ,
that noncoding seq ences contain important biological infor-
mation [44].
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APPENDIX A: MSE RESULTS FOR WHITE AND 1/f
NOISES

In this appendi , e pro ide detailed anal tical deri a-
tions of MSE for t o special cases: correlated and ncorre-
lated noises ith Ga ssian distrib tions. Linear Ga ssian
correlation is a necessar ass mption to make the deri ation
possible. In general, it is dif c It to deri e anal tical sol -
tions for MSE of stochastic processes ith nonlinear corre-
lations.

First, e start ith the case of ncorrelated noise ( hite
noise). For the case m=1, S¢ is the negati e nat ral loga-
rithm of the conditional probabilit that the distance bet een
t o data points is less than or eq al to r (i.e, | ; jI<r)
gi en that the distance bet eenthet o preceding data points
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FIG. 11. Ga ssian distrib tion. Shado ed areas centered at
points 2 and 1 represent the probabilit that the distances bet een
each of these points and an other point chosen random! from the
time series are less than or eq al to r.

is also less than or eq al to r (ie., | j; 4 =r). Since
there is no correlation bet een an data point and the pre-
ceding data points in hite noise, Sg red ces to the negati e
nat ral logarithm of the probabilit that the distance bet een
an t o data points is less than or eq al to r.

To be speci c, the joint probabilit of a nite seq ence of
independent random ariables is simpl

N
P( 1 2o W =1IpCH. (A1)
i=1
One can sho that
Pl yI=rlliz j4d=n
:Pr(l i I=<ralii =0
Pr(‘ il j 1‘ Sr)
_Pdi s XPdi: j4d=n
Plis jd=n
=Pl jl=n.

Using this approach rec rsi el , it can be pro ed that this
res It is alid for an m al e, hene er the ariables are
independent. In this appendi , e adhere to the standard no-
tations of sing P,() for probabilit distrib tions and p() for
probabilit densit f nctions.

To's mmari e, hite noise is a random process s ch that
all ariables are independent. Therefore,

SE: In Pr(‘ ] 1‘ = r)- (AZ)
Ne t, e calc late the probabilit distrib tion P(| ;
<r).
For a gi en al e of , the probabilit of nding other
data points ithin the distance r from s

+r

P 1=n=] "p0a (A3
r

For e ample, if ;=1 and r=0.3, (Fig. 11), P(I1 |

=<0.3) is the area nder the Ga ssian ¢ r e bet een the er-

tical lines =0.7 and =1.3. Similarl , for ;= 2 and the
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samer al e, P,(|2 j\sO.S) is the area nder the Ga ssian
crebet eenthe ertical lines = 23 and = 1.7. Since
jcanass me an al e bet een o and +%, Pi(|; |
<r) is the a erage area centered at all possible ; al es. In
other ords,

P ; i\<r>:f {f p(,-)d,}pwdi
RN

1 ) :
=— erf( '+:> erf( ! I)
20V2m) = o\2 oV2

2
xe 2 o

here erf refers to the error f nction.

Witho t loss of generalit, e considered a ero mean
(u=0) Ga ssian distrib tion. Coarse-grained hite noise
time series still ha e a ero mean Ga ssian densit beca se
the are the o tp t of a linear combination of Ga ssian ran-
dom ariables. Ho e er, the ariance decreases as the scale
factor increases,

0,=—F, (A4)

here 7 refers to the scale factor, o, to the ariance of the
coarse-grained time series corresponding to scale 7, and o to
the ariance of the original time series (scale 1). Conse-
q entl , the probabilit that the distance bet een t o data
points of the coarse-grained time series corresponding to
scale 7 is less than or eq al to r is

1 /1 (" ST

P( 7 7<n=— —f fl —
(7 =0 20 V2m) ., {er<<rv‘2/7
erf( 'i) e fi2dyg

o2l !

The abo e e pression can be appro imated n mericall .
We set the follo ing conditions for o r n merical calc la-
tion: (1) d — A =1/5000; (2) the range of the integration is
[ 3,3]=[ (N/2)A ,(N/2)A ], ith N=30000. Th's, e

ha e
N
1 kA + kA
V=S erf( fr) erf( J—r)
2 V2my V2l V2/7

el (ka)?72p )

The al esobtained ith the abo e form la are plotted in
Fig. 3. These n merical al es are in good agreement ith
those obtained b the MSE algorithm on sim lated hite
noise time series.

Ne t, e sho the MSE deri ation for 1/f noise. Note
that a random process ith a po er spectr m that deca s as
1/f is correlated. In order to n mericall calc late Sg for 1/f
noise, e ill sho that there e ists an orthogonal transfor-
mation that maps the correlated ariables into a basis in
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FIG. 12. Correspondence bet een the co ariance and the shape
of the conto rs of a bi ariate Ga ssian densit f nction. If t o
random ariables, X; and X,, are independent [Cj=C(X;,X,)=0],
the shapes of the conto rs are ellipses ith major and minor a es
parallel to X; and X, a es, respecti el . If the ariables ha e eq al
ariance (a'j=frk), the shape of the conto r is a circle. In contrast, if
t o ariables are not independent, the shapes of the conto rs are
ellipses ith major and minor a es that are not aligned ith the
a es Xj and Xy.

hich the are independent. The dimension of this basis re-
ects the e tension of the s stem memor .
Let s consider N random ariables, X;,X,,...,Xy, ith
mean al es X; for j=1,...,N. Elements of the co ariance
matri are de ned b

CX; X =ELX; X)Xk XW1. (A5)

The diagonal elements are the ariance of each random ari-
able X;, i.e., C(Xj,X;j)=0? (see Fig. 12).
The co ariance matri is Hermitian since it is s mmetric
and all of its elements are real. Therefore, it has real eigen-
al es hose eigen ectors form a nitar basis. Each of the
eigen ectors, U;, and the corresponding eigen al es, \;, sat-
isf the eq ation

CU;=\U;. (AB)
Hence,
N ifj=k
0 ifj#k’
Let U represent the matri  hose col mns are the eigen-
ectors of the co ariance matri . Then,

UJCU=NUU = { (A7)

MO 0
0 N, O 0
ucu=| o 0 [=A. (A8)
0 - 0 Ny O
0 - -+ 0 )y

We sho ne tthat UTCU is also the co ariance matri of
the transformed ectors Y=UTX, here X=[X;,X,...,Xx]",

021906-12




MULTISCALE ENTROPY ANALYSIS OF BIOLOGICAL ...

FIG. 13. The ellipse represents the conto r of a bi ariate Ga ss-
ian densit f nction. The major and minor a es of the ellipse are not
parallel to the a es X; and Xy, meaning that the random ariables
are correlated in this frame. Ho e er, there e ists a rotation that
transforms the original frame into one de ned b the a es Y; and
Yy, hich are aligned ith the major and minor a es of the ellipse.
Therefore, in this frame the original ariables are ncorrelated.

UTCU=UTE[(X X)X X)TU=E[UT(X X)X X)TU]
=E[(U™X U™X)(XTU XTU)]
=E[(UT™X U™X)(U™X U™X)T]
=E[(Y V(Y V).

Combining this res It ith Eq. (A8), e pro e that all trans-
formed ariables are ncorrelated in the basis formed b the
eigen ectors of the co ariance matri C. F rthermore, the
ariances, of, of the transformed ~ariables, Y;, are \A;.
The ph sical meaning of the transformation UT is ill s-
trated in Fig. 13. UT is an orthogonal transformation that
amo nts to a rotation of the original coordinate s stem into
one de ned b the eigen ectors of the co ariance matri , in
hich the transformed ariables are independent.
The probabilit densit f nction for an n-dimensional
Ga ssian random ector, X, is

1

el W2X xTe Hx x)] (A9)
Vem"c|

p(X)=

here |C| is the determinant of the co ariance matri .
For the transformed ector, Y=UTX, the probabilit den-
sit f nction is

p(Y) = = 1 ol w2y YTA Yy )]
V)" |A|
N N
1 (Y; Y)?
=[ ==ep ~——-=IIpv), (AL0)
i=1 V27N P 2\ i=1p I
here
1 v, v Y
Y)=—— -4 ‘) . All
(Y9 o{\fzﬂep 2( ol (A11)
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In order to calc late the co ariance matri n mericall ,
e limit the freq enc range of the po er spectral densit ,
denoted as S(w), of the 1/f noise signal to

Klw foro;<ow<w,
S(w) = (Al12)

0 other ise,

here K is a constant. The pper and lo er limits on fre-
q enc range are sef | constraints for n merical calc lation
and also realistic in real- orld applications here the reso-
| tion (sampling freq enc of signal) and length of data are
bo nded.

The a tocorrelation f nction, @, is obtained sing the
Wiener-Khintchine theorem,

“on

@(7) wazcos“"dwzzﬁ{cuwm Ci(wy?),
o

o ol
(A13)

here 7 represents the time lag and Ci is the cosine integral.
The series e pansion of the Ci is

oo
o (ke
Ci(9)=y+In(n + k% 201K (A14)
here y=0.5772... is E ler s constant.
Therefore,
o

_K @2 ( F 2% 2%

O(7) = Py |n<w1) + E{ 2012k X [(wo7) (017%]
(A15)

The a tocorrelation f nction is the a toco ariance di ided
b the ariance. For an ergodic process, as is the case of
1/f noise, the relation bet een the a toco ariance f nction
and the co ariance matri is

D0) D() 27 - DN

&) &0) P(n) -+ BN D))
C=| ®2n) ®(» ®O) - BN 2D

BN7) - e B D)

(A16)

The eigen al es of the co ariance matri are the ari-
ances of the transformed ariables. Since the ariables Y; are
independent, Sg is calc lated sing

_ 1 [V Y1]2>
p(Yy) \s“zm\le p( ) (A17)

We consider k=In(w;/w,) for n merical calc lation,
hich corresponds to normali ing the po er spectr m. We
also set w;=1/(2A) and w,=N. The n merical calc lation
ields the al e Sg=1.8. We note that coarse-graining 1/f
noise does not alter the correlation and the ariance of the
signal. Therefore, the Sg al e calc lated is alid for an
scale.
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FIG. 14. Sg as a f nction of time series n mber of data points
N. r=0.15 and m=2 for all time series. S mbols represent the
mean al es of Sg for 30 sim lated hite and 1/f noise time series,
and the error bars represent the SD.

APPENDIX B: TECHNICAL ASPECTS OF MSE
CALCULATIONS

1. Dependence on time series length and the values
of parametersm and r

The MSE method ses the Sg famil of statistics. There-
fore, in this appendi e se sim lated Ga ssian distrib ted
(mean ero, ariance 1) hite and 1/f noise time series to
ill strate the effects on Sg of (i) the time series nite length
and (ii) the choice of parameters m and r.

Fig re 14 sho sthat the mean al e of Sg di erges as the
n mber of data points decreases for both hite and 1/f
noise. Ho e er, since 1/f noise time series are not station-

r , as the n mber of data points decreases, the discrepanc
bet een the S¢ al e calc lated n mericall and the mean

al e for 30 sim lated time series increases faster for 1/f
noise than for hite noise time series. For both t pes of
noise, for N=1 105, the discrepanc bet een the n merical
and the mean al e of Sg for sim lated time series is less
than 0.5%. Ho e er, for N=1 10° the discrepanc bet een
these al es is appro imatel 12% in the case of 1/f noise
b tstill less than 1% in the case of hite noise. F rthermore,
e en for er large time series, the SD of Sg al es for 1/f
noise is ne er as small as for hite noise. These res Its are
d e to the fact that stationarit is a basic req irement of Sg.
The MSE method presents the same limitation. One possible
sol tion to this problem is to decompose the original time
signal into m Itiple  ell-beha ed signals, each corre-
sponding to different time scales.

We also note that as the n mber of data points decreases,
the consistenc  of Sg res Its is progressi el lost. Therefore,
there is no g arantee that if Sg is higher for time series a than
for time series b, both ith N data points, the same res It

ill hold if onl N’ data points are sed to calc late Sg, in
partic lar if N>N' or N’>N.

We note that the coarse-graining proced re generates
times series ith a decreasing n mber of data points. Ho -
e er, coarse-grained time series are not a s bset of the origi-
nal time series. Instead, the contain information abo t the
entire original time series. Therefore, the error d e to the
decrease of coarse-grained time series length is likel lo er
than that res Iting from selecting a s bset of the original
time series.
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FIG. 15. Sg as a f nction of the parameter r (left plot) and m
(right plot). N=3x10* and r=0.15 for all time series. S mbols
represent the mean al es of Sg for 30 sim lated 1/f and hite
noise time series, and error bars represent the SD.

As stated in Sec. Il, the r al e de nes the similarit
criterion sed to compare ectors. If the absol te difference
bet eenan t o matched ector components is larger than
r X SD, then the ectors are different; other ise, the are
considered eq al. Theoreticall , for contin o s processes, r

aries bet een 0 and 1; b t for e perimental time series, the

recording resol tion le el determines the lo est possible r
al e. Inan case, the act al r al e determines the le el of
accepted noise, since for larger r al es, fe er ectors are
disting ishable. Fig re 15 (left plot) sho sthatasther al e
increases, the Sg al e for both sim lated 1/f and hite
noise time series decreases. Of note, the consistenc of Sg
al es is preser ed. Therefore, the SD of Sg al es (error
bars) re ects the scattering of al es corresponding to differ-
ent time series (inters bject ariabilit ).

Fig re 15 (right plot) sho s the ariation of Sg ith m

al e, i.e,, the ector length. Bet een m=1 and m=5, the
mean al es of Sg ar less than 2% and the coef cient of

ariation (CV=SD/mean) is less than 3% for both t pes of
noise. For larger m, both the Sg and the CV increase dramati-
call d etothe nite n mber of data points, since longer and
longer time series are req ired in order to calc late the fre-
q enc of the m and (m+1)-component ectors iths f -
cient statistical acc rac .

For a disc ssion of the optimal selection of m and r pa-
rameters, and the con dence inter als of Sg estimates, see
[49]. We note that for m=2 and r=0.15, the discrepancies
bet een the mean al es of Sg for sim lated time series and
the n mericall calc lated al es are less than 1% for both
1/fand hite noises. This res Its ggests that for most prac-
tical applications, the error bars associated ith comp tation
of Sg al es are likel smaller than the error bars related to
e perimental so rces and also to inter- and intras bject ari-
abilit .

2. Effect of noise, outliers, and sample frequency

The o tp t of an e periment ma be contaminated b
different t pes of noise. Here, e disc ss the effects of MSE
anal sis of s perimposing ncorrelated ( hite) noise on a
ph siologic time series. Common so rces of ncorrelated
noise for interbeat inter al time series are the analog-digital
con ersion de ices, hose acc rac depends both on the
sample freq enc and the n mber of bits sed, and comp ter
ro nding errors. Fig re 16 sho s that (i) s perimposing n-
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FIG. 16. Effects of different amo nts of Ga ssian hite noise
on MSE ¢ r es. The MSE ¢ r e labeled original corresponds to
the MSE res Its for the RR inter als time series from a health
s bject.

correlated noise on a time series affects mainl the entrop

al es on small scales; (ii) the discrepanc bet een the en-
trop al es assigned to the original time series and those
assigned to time series ith s perimposed ncorrelated noise
increases as the signal-to-noise ratio decreases; (iii) for small
scales, Sg al es monotonicall decrease ith scale factor
similar to  hite noise time series. This effect becomes more
prominent as the signal-to-noise ratio decreases.

O tliers ma also affect Sg al es beca se the change
the time series SD and, therefore, the al e of parameter r
that de nes the similarit criterion.

In the interbeat inter al time series, t ot pes of o tliers
are commonl fo nd res Iting from (i) missed beat detec-
tions b a tomated or is al electrocardiographic anal sis,
and (ii) recording artifacts [Fig. 18(a)]. These o tliers do not
ha e ph siologic meaning. Ho e er,the ma dramaticall
affect the entrop calc lation if their amplit de is a fe or-
ders of magnit de higher than the mean al e of the time
series.

For the anal sis of ph siologic rh thm d namics, cardiac
beats not originating in the sin s node ma be treated as
o tliers [Fig. 18(b)]. Of note, the amplit de of all cardiac
(sin s and nonsin s) interbeat inter als is of the same order
of magnit de. Therefore, the incl sion of a relati el lo

=

Amplitude of outliers
SR Y - e B -

0 0.2 0.4 0.6 0.8 1
% of outliers

FIG. 17. Conto r plot sho ing ho the percentage of o tliers
and their amplit de (relati e to the mean al e of the time series)
affects the ariance of the time series. Lines connect pairs of al es
that change the ariance b the same amo nt.
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FIG. 18. (a) The interbeat inter al time series of a 0 ng health
s bject ith 15 o tliers that represent artifacts or missed beat de-
tections. Note that the absol te al e of the o tliers is m ch larger
than the mean RR inter al. (b) The interbeat inter al time series of
an elderl health s bject ith freq ent premat re entric lar com-
ple es (PVCs) (t o are represented in the g re). (c) MSE res lts
for the time series sho n in plot (a): the solid line is the MSE res It
for the n ltered time series; the dotted line is the MSE res Its for
the same time series e cl ding o tliers; and the dashed line is the
MSE res It for the original time series b t singanr al e that is
calc lated b e cl ding the o tliers. (d) MSE res lts for time series
sho n in plot (b): solid and dotted lines are the MSE res lts for
n Itered and Itered (PVCs remo ed) time series.

percentage of nonsin s beats sho Id not signi cantl change
the entrop  al es.

Consider a time series, X, ith N data points, M of hich
are o tliers ith amplit de A. Let X’ represent the time se-
ries that is obtained from the time series X b e cl ding the
o tliers. Ass me that M <N and that A=aX’, here X" is the
time series mean al e. It can be sho n that 0¥(X) o?(X’)
=(a%e €%’ 2ea)u(X')?, here e=M/N, and o and u are
the time series SD and mean al e, respecti el .

Fig re 17 sho s thata small n mber of o tliers ith high
amplit de has similar effects on the ariance as a higher
percentage of o tliers ith lo er amplit de.

Fig re 18(a) presents a time series ith 0.05% o tliers

hich acco nt for an increase in the time series SD of abo t
44%. Fig re 18(b) presents a time series ith appro imatel
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ten times more o tliers than in Fig. 18(a). Since the ampli-
t de of the o tliers is of the same order of magnit de as the
remaining data points, the difference bet een the SD of the
time series hich incl des these o tliers and that hich e -
cl des them is onl 1%.
Changes of the time series SD proportionall affect the
al e of parameter r. Higher r al es mean that fe er ec-
tors ill be disting ishable and that the time series ill ap-
pear more reg lar. Fig re 18(c) presents the MSE res lts for
the n ltered time series (a) (solid line) and the correspond-
ing time series obtained b e cl ding the o tliers (dotted
line). As e pected, the MSE ¢ r e corresponding to the n-
Itered time series is lo er than the MSE ¢ r e correspond-
ing to the Itered time series.

The presence of a small percentage of o tliers ma sig-
ni cantl alter the SD b t sho Id not s bstantiall modif
the temporal str ct re of the time series. In Fig. 18(c), the
dashed line represents the MSE res Its for the n Itered time
series obtained sing the r al e deri ed from the Itered
time series. Note that hen sing the correct r al e, the
MSE c r es for the n ltered and the Itered time series
o erlap.

Fig re 18(d) compares the MSE res lIts for time series (b)
and for the time series that res Its from e cl ding the o tli-
ers. Thet o MSE ¢ r es almost o erlap, sho ing that the
entrop meas re is rob st to the presence of a relati el
small percentage of lo -amplit de o tliers.

For a time series sampled at freq enc f, the temporal
location of the act al heartbeat can be identi ed onl p to
an acc rac of A=1/f. Each data point of a coarse-grained
heartbeat inter al time series is an a erage of consec ti e
differences. For e ample, [=(RR;+---+RR, )/7=[(t,

ty+---+(t, t. 1)]=(t, ty)/7 Therefore, the acc rac of
a eraged heartbeat inter als of coarse-grained time series is
Al ie., the acc rac increases ith scale.

Sg is nderestimated for nite sample freq enc  al es
[48]. Ho e er, the discrepanc bet eenthe al e of Sg cal-
c lated for a time series sampled at a nite freq enc and the

al e of Sg corresponding to the limit lim,_,oSg decreases

ith scale. For anal sis on small time scales, it ma be im-
portant to consider a correction of this effect [48]. We note
that the concl sions that e present in this paper are not
altered b the al e of sample freq enc .

APPENDIX C: MSE ANALYSIS OF DISCRETE TIME
SERIES

Here e disc ssan important artifact that affects the MSE
anal sis of discrete time series, s ch as DNA seq ences.

Let s consider an ncorrelated random ariable, X, ith
alphabet ®={0,1}. Both s mbols occ r ith probabilit 1/2.

All possible different t o-component seq ences b ilt
from the binar series are 00, 01, 10, and 11. Therefore, the
alphabet of the coarse-grained time series corresponding to
scale 2 is ®,={0,1/2,1}. The probabilities associated ith
the occ rrence of the different al es are 1/4, 1/2, and 1/4,
respecti el . Let sconsiderthatther al e sedtocalc late
Sg is 0.5. In this case, onl the distance bet een the coarse-
grained al es 0 and 1 (and not bet een al es 0 and 1/2,
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FIG. 19. Probabilit of disting ishing an t o data points ran-
doml chosen from the coarse-grained time series of binar discrete
time series (r=0.5).

and bet een 1/2 and 1) is higher that r. Therefore, the prob-
abilit of disting ishing t o data points randoml chosen
from the coarse-grained time series, P,(| o |>1), is p(0)
Xp(1)=1/4x1/4=1/16=0.0625.

Similarl , there are eight different three-component se-
q ences that can be b ilt from the original binar series: 000,
001, 010, 100, 110, 011, 101, and 111. Conseq entl , the
alphabet of the coarse-grained time series corresponding to
scale 3 is ©,={0,1/3,2/3,1} and the probabilities associ-
ated ith the occ rrence of each al eare 1/8, 3/8, 3/8, and
1/8, respecti el . For r=0.5, onl the distances bet een the
coarse-grained data points 0 and 2/3, 1/3 and 1, and 0 and 1
are higher than r. Therefore, P,(| o />r)=p(0) X p(2/3)
+p(1/3) X p(1)+p(0) X p(1)=0.1094.

Note that the probabilit of disting ishingt o data points
of the coarse-grained time series increases from scale 2 to
scale 3 (Fig. 19). As a conseq ence, Sg also increases, con-
trar to both anal tic and n merical res lts presented in Fig.
3. This artifact, hich affects discrete time series, is d e to
the fact that the si e of the alphabet of the coarse-grained
time series increases ith scale.

In general, for scale n, the alphabet set is ®,={i/n} ith
0=<i=n, and the corresponding probabilit set {p(i/n)} is
generated b the e pression n!/[2"Xil(n i)!], O<i=<n.
The al eof Pi(| , />r)iscalc lated b the eq ation

N1 n
Pl o ol >0=2 plimX plim), (C1)
j=0

-
i=i

here i’=N+j+1 if n=2N (e en scales) and i’=N+j if n
=2N 1 (odd scales).

Fig re 19sho sho the probabilit aries ith the scale
factor. We note an atten ated oscillation, hich as a conse-
g ence alsosho s ponthe MSE o tp tc r e for the same
time series. The period of this oscillation depends onl on
ther al e.

To o ercome this artifact, one approach is to select the
scales for hich the entrop  al es are either local minima
or ma ima of the MSE c r e. We adopted this proced re in
calc lating the comple it of coding ers s noncoding DNA
seq ences (Fig. 10). Note that for ncorrelated random bi-
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nar time series (Fig. 19), and for r=0.5, the seq ence of
entrop al esatodd ore en scales monotonicall decreases
ith scale factor, similar to the MSE ¢ r e for hite noise
time series, as described in Sec. 111 (Fig. 3).
An alternati e approach is to map the original discrete
time series to a contin o s time series, fore ampleb co nt-
ing the n mber of s mbols (1s or 05s) in nono erlapping
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indo s of length 2". Since this proced re is not a one-to-
one mapping, some information encoded on the original time
series is lost. Therefore, relati el long time series are re-
q ired. We adopted this proced re in calc lating the com-
ple it of binar time series deri ed from a comp tere ec t-
able le and a comp ter data le (Fig. 9).
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