ICA EEG Analysis Basics and Applications

Jeng-Ren Duann, PhD

Associate Director, Biomedical Engineering Research Center CMU&H and Associate Scientist, Institute for Neural Computation, University of California San Diego

What's ICA?

- Independent Component Analysis
- Blind Source Separation
 - Speech recognition
 - Cocktail party problem

Historical Remarks

- Herault & Jutten, Space or time adaptive signal processing by neural network model, Neural Nets for Computing Meeting, Snowbird, 1986 (seminal paper)
- Camon (1994): Approximation of mutual information by 4th order statistics
- Bell & Sejnowski (1995): Information maximization (infomax)
- Amari et al., (1996): Natural Gradient Learning
- Cardoso (1996): JADE

ICA learning rule

How to make the outputs statistically independent? Minimize their redundancy or mutual information.

Entropy:
$$H(X) = -\sum_{x \in X} p(x) \log(p(x))$$
Joint entropy
$$H(X,Y) = -\sum_{(x,y) \in X \times Y} p(x,y) \log(p(x,y))$$
Dice: 1/6
Mutual Information
$$I(Y_{1},Y_{2}) = H(Y_{1}) + H(Y_{2}) - H(Y_{1},Y_{2})$$

$$H = 6 \left(-\frac{1}{6}\log_{2}\left(\frac{1}{6}\right)\right) = 2.58$$
Minimizing $I(Y_{1},Y_{2}) \rightarrow Maximizing H(Y_{1},Y_{2})$
=0 if the two variables are independent
$$\Delta W = \frac{\partial H(y_{1}, y_{2}, ...)}{\partial W}$$

InfoMax(Bell & Sejnowski, 1995)

The non-linear function provides all the higher-order statistics necessary to establish independence.

Kurtosis, Super- and Sub-Gaussian

Remove the mean

 $X = X - \langle X \rangle.$

'Sphere' the data by diagonalizing its covariance matrix,
 x = 2<xx^T>^{-1/2}(x-<x>).

• Update W according to $\Delta \mathbf{W} \propto \frac{\partial H(\mathbf{y})}{\partial \mathbf{W}} \mathbf{W}^T \mathbf{W} = \begin{bmatrix} \mathbf{I} + \phi \mathbf{u}^T \end{bmatrix} \mathbf{W}$

Blind Source Separation

Solving a BSS problem

Figure 2: (a) In blind separation, sources, s, have been linearly scrambled by a matrix, \mathbf{A} , to form the inputs to the network, \mathbf{x} . We must recover the sources at our output \mathbf{y} , by somehow inverting the mapping \mathbf{A} with our weight matrix \mathbf{W} . The problem: we know nothing about \mathbf{A} or the sources. (b) A successful 'unscrambling' occurs when $\mathbf{W}\mathbf{A}$ is a 'permutation' matrix. This one resulted from separating five speech signals with our algorithm.

Bell & Sejnowski, NIPS 1994

Cocktail Party Problem

Solving a Cocktail Party Problem

Speech Enhancement & Recognition

Improves speech recognition rate after separation Algorithm works for various sounds in different environments.

Park and Lee (1999):

SNR [dB]	W/o sep.	With sep.
15 dB	87.8%	90.8%
10 dB	68.9%	87.9%
5 dB	37.0%	79.9%

ICA EEG Analysis

Examples

II. Brain Dynamics and Motion Sickness

When single-trial analysis is NOT possible: estimating state changes

Experimental Paradigm

Chen et al., (2009)

Group Motion-sickness Related Components

