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What Is frequency?

*Frequency definition
*Fourier glass
*Instantaneous frequency

«Signal composition: trend, periodical,
stochastic, and discontinuity
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What is frequency?

* The inverse of period. But then what is period?

 Number of times of “happening” in a period. Then what is
“happening”? Zero crossing, extrema, or others?

 Fourier transform.
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Frequency definition (1)

Period is defined as number of
events in duration of time. And
frequency is the inverse of
period.

The concept of period is an
average. So do the frequency.

Since there is no
Instantaneous period, there is
no instantaneous frequency.

Putting on Fourier glasses,
uncertainty principle comes
Into play for sinusoidal signal.
That is, the lower the
frequency to be identified, the
longer the duration of signal.
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Analogy between velocity and frequencys

Average velocity: Instantaneous velocity:
AX V. = ax

Vav = — — in — dt
At

What is instantaneous frequency?

f d?
— in_dt

Average frequency:
AN
fav —
Al
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Single frequency?

Is the squared periodical wave
of single frequency?

With Fourier glasses, sine
wave is of single frequency
while squared wave is of
multiple frequencies.

What is the definition of
frequency?

What do we want to see?
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Non-Periodical Signal of many frequeni( ‘

Does a straight has a
frequency?

Putting on Fourier glasses, we
see so many frequencies from
a straight line.

Again what do we want to see?

straight line
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What do we want from frequenc ;

Data perceptlon

« Signal is normally composed of four parts: trend,
periodical, discontinuity(jump, end effect), and stochastic.

« Trend is best perceived in time domain.

 Discontinuity which might result in infinitely many
components in Fourier analysis is better eliminated
before processing.

« Stochastic part currently is not involved in this discussion.

* Periodical signal can be well perceived in time-
frequency-energy representation.
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why Fourier?

1. LTI system
2. Sine/Cosine: Eigen-function of LTI system
3. Frequency: Eigen-value of LTI system



Linear Time Invariant System

* Linear System :
L(af, (t) +bf, (t)) = aLf, (t) + bLf, (t)

* Time Invariant:

Lf (t) = h(t)
Lf (t—u) =h(t—u)
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LTI vs. Convolution

LS(t) = G(t)
[f(t)=L j f (U)S(u—t)du

— j f (U)LS(u—t)du

— j f (U)G(u~—t)du
= f*G
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Exponential : eigen-function of £ sys'te' r

Sin and Cos functions are eigenfunction of LTI system.
Eigenvalue of a LTI system is frequency.
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Data Analysis vs Data Processin

Data Analysis
* For understanding
* For discovery

* Find out what’s behind
the signal.

Data Processing

For control
For design

Find out what
model(parameters) best
fits the pass behavior.
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Sampling:

The connection between continuous and discrete world is via sampling:
f(t)= ) o(t—kat)f,

where

f. = f (KAL)

Thru the generalized function theory, weak formulation ensures
the mathematical identity.



DFT: zero order integration

 Discrete signal can be written as continuous function
with Delta function trains weighted by sampled values.
Continuous Fourier transform for the signal results
naturally into zero order integration.

Fe = Z W™
i=1



The accuracy of DFET*

TABLE 5.16.1

Comparison of DFT with Fourier Transform Values
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“Fold-over frequency of spectrum. See Figure 5.16.4.

*Extracted from “Signal And Linear System”, p331



The accuracy of DFET*
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FIGURE 5.16.4 Comparison of DFT calculation with the true Fourier integral spectrum.
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Time vs Frequency®

Continuous in time Discrete in time — Periodic in frequency
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Time vs Frequency

Time domain Frequency domain

« Continuous « Continuous

« Periodical (finite length) * Discrete (sampling)

* Discrete (sampling) « Periodical (finite length)
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Fourier Transform

Continuous in Time Continuous in Frequency

F(w) = T f (t)e 1 dt

—0O0

B 1 —+-o0 JCOt
f(t)—z:‘;ol:(a))e dw

\\'
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Discrete in Time Fourier TranSiomm™

(DTFT)

Discrete(sampling) in time Periodical in frequency
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Aliasing

1. What is aliasing?
2. Aliasing effect in time-frequency plot.
3. How to avoid aliasing?



Aliasing

Aliased frequency: 20-15 =5 Hz
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Source signal: sin(2*pi*10%t*

frequency (Hz)
N w

Sample rate: 1000H

CustomWave
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CustomWave-FastSTFT
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Anti-Aliasing

* Do low pass filter on analog signal before sampling.
(This is done normally using analog circuit. For
advanced data acquisition system, the function is a built-
In feature.) If the frequency of interest is say Fc, signal of
frequency higher than Fc should be eliminated.

 Digitize signal with sampling rate higher than Nyquist
frequency 2Fc. (According to sampling theory,
Information will be lost for sampling rate lower than the
Nyquist frequency. In practice, sampling should be much
higher than Nyquist frequency. In practice, we suggest
sampling rate be more than 20 times the frequency of
Interest Fc.)
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Uncertainty Principle
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Simultaneously Determine THme ancs
Frequency
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Time and Frequency Resolutions

J\[\j\L = /\ y
I_’ Af <_| Large

|_>At 4—I Small
J\W = f\ g
|_> At <_| Large |->AF| Small
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Formula

Equality  holds when

s -
Ly

glt)~ e
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Removal of Non-Periodical Sighal

Frequency based filter
lterative Gaussian Filter
EMD as filter
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Taipei hourly temp 1961-2007
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Trend embedded in signal of interest

« Do we have noise signal
of low frequency?

CustomWave
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EMD for trend removal

« EMD is also a good way
to separate trend signal.

View IMF
T
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ime (sec)
View Residual
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| | | | | | | | | ]
0 01 02 03 04 05 06 07 08 09 1
ime (sec)

( %CAD



Moving Average

Smooth curve can be obtained by moving average:

x'k = (Xk—l_'_ xk —+ xk +1)/3

In general number of point average can be many with Gaussian weighting.
-\2
k-
x'k = Az_j Xk—j exp(—( J)2 )
J 20 o $L/AncAD




Gaussian Filter and Heat Diffusion’

For continuous signal, Gaussian filter is written as

(t-2°
5 )dz

u'(t) = Afu(z)exp(-
20
It is the solution of the following heat equation
ou  ou
— =a—+0(t
ot ox° K

The analogy suggests that diffusion effect results in
smoothing of signal (temperature).



Gaussian Filter

* Iterative moving least square method

« Zero phase error

« [Fast algorithm developed by Prof. Cheng of NCKU.

« Continuous signal with trend can be written in the form:

n m
X(t) =) a cosat+b singt+> ot
k=1 i=0
For each iteration of Gaussian filter, polynomial order m is reduced
by 2.

« Gaussian function is the fundamental solution to heat equation. The
iIdea of smoothing is similar to the mechanism of heat spreading,
regarding signal as unbalanced temperature distribution to begin
with,



lterative Gaussian Filter

« For continuous signal, its Fourier representation is

I .
f(t) =— J- Flw)e™ dw
2T J_

Gaussian filter is the weighted average with Gaussian as the
weighting function

1 e _(e=o?
f, (t) = E{E}J._m e o f(t)dt

+m =
where cla) = J. e ot dt =o'n

40



lterative Gaussian Filter

« After m times of iteration, filtered signal is represented as

1
() = ——

41
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lterative Gaussian Filter

After m times of iteration, the transfer function becomes:

05 .

amplification

. | . | . | . | . | . | . | . | . | .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
normalized frequency (fn)
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lterative Gaussian Filter

__4b b : Attenuation factor
(e.g. b=0.01)
f, * Low frequency

f, * High frequency

L AnCAD



lterative Gaussian Filter

 The Gaussian factor ,0, and number of iteration,
m, are determined via solving

1— [1—9‘2”2("‘1)2 ]m —b

1_ I:l_e—ZﬂZ(O'fH)z ]m :1_b



Trend Estimator

Tc (Trend period) : For low pass filter, period lower than the value will
be annihilated. In practice Tc is approximately the length of “bump”
(half wavelength) under which will be eliminated.

Cutoff frequency fC — i
TC
2
-
TC
£ —2f
Number of iteration m = 33



Time-frequency analysiS‘ancs

Instantaneous freguency

1. What is time-frequency analysis?
2. The need for instantaneous frequency
3. Methods used for time-frequency analysis

L AnCAD



TF Plot: Single frequency
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TF Plot: Change of frequency ™=

« Signal with abrupt change of
frequency.

(1) = 0.30cos(2x104) ,0<t<1
- 10.30cos(2x20t) 1<t<?2




|

TF Plot: Change of frequency and amplit;t‘”]e_ |

« Signal with abrupt change of
frequency and amplitude

() = 0.30cos(2x10nt) ,0<t<1
- 10.15c0s(2x20mt)  1<t<?2




Time-Frequency Analysis Compari' C

Fourier STFT Morlet / Hilbert HHT
Transform Enhanced Transform
Morlet

Instantaneo | n/a distribution distribution Single value Discrete
us frequency values
Frequency no yes yes yes yes
change with
time
Frequency good ok ok/good good good
resolution
Adaptive no no no n/a yes
base
Handling n/a no no yes yes
non-linear
effect




Short-Term Fourier Transform

Frequency at a certain time is
a distribution obtained from
Fourier transform. The short
period of signal applied to the
Fourier transform contains the
specific moment of interest.

In time-frequency analysis,
such idea evolves as the
Short-Term Fourier Transform
(STFT).

STFT:
F(t, o) = T f(r)g(r—t)e'"dr

Note g is a windowing function.
For Gaussian window, the transform
IS also known as Gabor Transform.



Challenges in STFET

« Catching low frequency component needs longer time.
« Windowing is needed to avoid end effects.

=> STFT is suitable for band-limited signal like speech and
sound.
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Morlet Transform

« Scale property in signal is
related to frequency property
when mother wavelet is Morlet..

* Longer duration of wavelet is
used to catch lower frequency
component.

F(L9)= [ 1)y (e



Morlet transform on a chirp
signal.

In catching the high frequency
spectrum, mother wavelet of
short duration of time is used.
The spectrum of such wavelet
suffers from wide span of
frequency, resulting in low
resolution, as shown in the
right left plot.




By applying Gaussian
windowing in frequency
domain and knowing that the
crossed term of convolution
between mother wavelet and
signal is the cause of blur, the
resolution of Morlet transform
can be greatly improved by
neglecting the crossed term.

The fine structure appears in
high frequency region is
caused by under sampling.
The chirp signal is digitized
with constant sampling rate.
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With higher sampling rate, the
fine structure in TF plot
disappeared. This is to assure
the fine structure pattern is
caused by under sampling.




Time-Frequency Resolution

Heisenberg Box
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Primary vs. Nature Fregueney

- AnCAD



Primary vs. Secondary freguent

Primary (= B¥3isF ) Secondary (FEEIHFIEF)

* Force vibration * Also known as

« Normally with overtones Fundamental or Natural
or harmonics Frequency

+ Frequency varies as * Induced by forced
driving frequency excitation

* Frequency remains the
same with various speed
of excitation.
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Harmonic and Overtone

 Non-sinusoidal creates harmonics
in spectrum domain.

Channe! 1
« Overtone generally refers to high

01
frequency peaks which is not
exactly multiples of principle or
frequency. For example, drum ) |
beating. B T e R
 Both primary and secondary el
frequencies contain overtones. Channel LT
«  Primary excitation can only T T T T T T
includes harmonics. A
0 IIIIIIIIAI

0 10 0 £l ] 50 0 10 ] 90 10
frequency (Hz)



Primary and secondary fi
distinction
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Amplitude modulation (beatWwave)s
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Beat wave

cos(awt) +cos((w + ow)t) = 2cos(wt) cos(%ot)

CustomWave
| ll
0
2
0 0.5 1 15 2 2.5 3 35 4 45 5
time (sec)

CustomWave-FFT
T | T | T | T | T | T |
1 —
0.5 A A
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
frequency (Hz) /
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Amplitude modulation

CustomWave
| T | T T | L T T | T T T
1 il ]
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Semi-diurnal tide in ground water

Beat wave occurs twice per month.

Channel 2
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day
Channel 2-FFT

0.004 — 29.5 days _

o.ooz2




Adapted from: http://www.hermit.org/eclipse/why_cycles.html




Adapted from: http://www.hermit.org/eclipse/why_cycles.html




Single modulation

CustomWave
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Double modulation

CustomWave
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Double modulation

CustomWave
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Triple modulation

CustomWave
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Hilbert-Huang Transform

1. Why is it also called Happy Hilbert
Transform?

2. HHT=EMD+HT

L] AnCAD



Empirical Mode Decomposition
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tone

chirp

tone + chirp ﬂ

X (t)
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IMF1, iteration
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IMF1, iteration
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IMF1, iteration
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IMF1, iteration
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LL1 EMD i #2.(Empirical Mode Decomposition, EMD)# 4
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Small wiggle effect

Small wiggling results in much difference in envelope.



Central lines with and without Intermitte

test

Central line with intermittency test
Central line without intermittency test
Raw data

Moo -
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After intermittency test. There two points are not
defined as extremas, resulting in smoother
envelopes. /o



Intrinsic Mode Function (IME)™

 Definition: “Any function having the same numbers of
zero-crossings and extrema, and also having symmetric
envelopes defined by local maxima and minima
respectively is defined as an Intrinsic Mode Function
(IMF). “ ~ Norden E. Huang

* An IMF enjoys good properties of Hilbert transform.

« A signal can be regarded as composition of several IMFs.
IMF can be obtained through a process called Empirical
Mode Decomposition. (ref. Dr. Hsieh’s presentation file)

- AnCAD



Instantaneous Frequency ances

Hilbert Transform

- AnCAD



Prevailing Views of Instantaneouss®

Frequency®

« The term, Instantaneous Frequency, should be banished
forever from the dictionary of the communication
engineer.

» J. Shekel, 1953

« The uncertainty principle makes the concept of an
Instantaneous Frequency impossible.

» K. Grochennig, 2001

* Transcript of slide from Norden E. Huang ® &/ AnCAD



Definition of Frequency*®

Fourier Analysis

Wavelet Analysis

Wigner-Ville Analysis

Dynamic System through Hamiltonian:

H(p,a,t) and wave action:  A(t) =Tj: pdq

__oH

) = ——
oA

Teager Energy Operator
Period between zero-crossings and extrema
HHT analysis: xt)=>ate"® , _99

odt

* Transcript of slide from Norden E. Huang
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The need for Instantaneous Frequency .

In classical wave theory,
frequency is defined as time
rate change of phase.

Freguency is an continuous
concept. There is need to
clarify what we mean by

frequency at a certain moment.

Uncertainty principle does
apply.

K = Voo
o = OPp

ot
ok NV co
ot




Instantaneous Frequency

« A time-series signal can be
regarded as the x-axis
projection of a planar slider
motion. The slider moves
along a rotating stick with axial
velocity a(t) , while the stick is
spinning with an angular
speed ¢(t) .

« The corresponding y-axis
projection shares the same
frequency distribution as x-axis
signal with 90 degree phase
shift. Such conjugate signal is /.
evaluated from Hilbert X
Transform.

- =

@)




Hilbert Transform

y(t) = i PV | ;(ETT) dr
2 (o .
Z(t)=———1| S e
z(t) = x(t) +iy(t) = a(t)e'”™" © Jor jo (@)e” do
where
t) = /X2 + y?2 ) |
a(t) = /x> + yt () =Lj_ (et
o) =tan y@®© J2r =
X (1)
0P
Instantaneous frequency: w=——
ot
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Negative instantaneous i

frequency occurs for signalnot ~ ~T T T T T AT

having equal number of | /\/\/‘v

extreme and zero-crossing | ﬁ\j/‘v
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Example 1.

cos(2*pi*10*t+0.3*sin(2*p1*20*t))

cos(2*pi*10*t+0.3*sin(2*pi*20*t))
T T T T T T T T T
1
Raw data 0 \/VW\/M/\N
s 1 1 1 1 1 1 1 1 1 3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)

analytical signal
T

Analytical signal WMMMW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)

Instantaneous Amplitude
T T T

Instantaneous amplitude
0] 0.1 0.2 0.3 0.4 timeO(SSec) 0.6 0.7 0.8 0.9 1
Instantaneous Frequency
Instantaneous frequency

time (sec)



Selection.CH2

Selection.CH1

frequency (Hz)

analytical signal

0 0.1 02 03 0.4 05 06 0.7 08 0.9 1
time (sec)

Hilbert Spectrum

0 01 0.2 03 04 05 0.6 0.7 08 09 1
time (sec)



Example 2

cos(2*pi*10*t+0.3*sin(2*pi*20*t))+cos(2*p1*26*t)+0.5*

Raw data

Analytical signal

Instantaneous amplitude

Instantaneous frequency

CustomWave
T T T T T T T T T
2
oH 4
2 1 1 1 1 1 1 1 1 1 ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)
CustomWave-Hilbert
T T T T T T T
2
TFAVAY . iNJi VAL N [ SV [N £ p ‘=
oH s ] 4 H 3 : '/ s H : ; H H H ] \/
ITAAVAVERAUAY ATAAVTAAVARRAVIAYRVA TRV /A
H V l :
2 | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)
CustomWave-Hilbert
T T T T T T T T T
pya

1 ]
= 1 1 1 1 1 1 1 1 1 7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)

CustomWave-Hilbert

1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)



Line crossing in X-Y plot
suggests existence
of negative frequency.

Hilbert Spectrum

Selection.CH2

frequency (Hz)
w

0
Selection.CH1

CustomWave-Hilbert Spectrum




CustomWave

C 1 1 1 1 1 1 1 1 1 —
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)
View IMF
T T T T T T T T T
I~ —
1 1 1 1 1 1 1 1 1
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)
View Residual
T T T T T T T T T
= 1 1 1 1 1 1 1 1 1 —
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)



Raw data

Hilbert spectrum after EMD

Hilbert spectrum of raw data

frequency (Hz)

frequency (Hz)

|
s
[

h

&
__ -8

CustomWave
T T T T T T T T T
2
oM -
2 1 1 1 1 1 1 1 1 1 -
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)
EMD_CH7_Removed-Hilbert Spectrum
60

o]
o

IN
o

®
o

N
o

N
o

o

0.4 0.5 0.6
time (sec)

CustomWave-Hilbert Spectrum

60

50

40

30

20

10

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)
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Limitation on Hilbert Transforf' \

« Data need to be mono-component. Traditional
applications using band-pass filter, which distorts the
wave form. (EMD Resolves this problem)

« Bedrosian Theorem: Hilbert transform of [a(t) cosw(t)]
might not be exactly [a(t)sin w(t)] for arbitrary a and w.
(Normalized HHT resolves this)

* Nuttal Theorem: Hilbert transform of cos w(t) might not
be exactly sin w(t) for arbitrary w(t). (Normalized HHT
Improved on the error bound).

« But we have to realize that the Instantaneous Frequency
us always an approximation.

* Transcript of slide from Norden E. Huang ® &/ AnCAD
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Limitation for IF computed throg _
Hilbert Transform?*

- N

Data must be expressed in terms of Simple Oscillatory Function
(aka Intrinsic Mode Function). (Note: Traditional applications using
band-pass filter distorts the wave form; therefore, it can only be used
for linear processes.) IMF is only necessary but not sufficient.

Bedrosian Theorem: Hilbert transform of a(t)cos0(t) might not be
exactly a(t)sinB(t). Spectra of a(t) and cos0(t) must be disjoint.

Nuttal Theorem: Hilbert transform of cosO(t) might not be sin8(t) for
an arbitrary function of 6(t). Quadrature and Hilbert Transform of
arbitrary real functions are not necessarily identical.

Therefore, simple derivative of the phase of the analytic function
might not work.

* Transcript of slide from Norden E. Huang ® &/ AnCAD



Bedrosian Theorem?*

« Let f(x) and g(x) denotes generally complex functions in
L2(- «, «) of the real variable x. If

(1) The Fourier transform F(w) of f(x) vanished for | w | >aand
the Fourier transform G(w) of g(x) vanishesfor | w | <a,
where a is an arbitrary positive constant, or

(2) f(x) and g(x) are analytic (i.e., their real and imaginary parts are
Hilbert pairs),

then the Hilbert transform of the product of f(x) and g(x) is given

H{1(x) g(x) } =1(x) H{g(x) }.

Bedrosian, E. 1963: A Product theorem for Hilbert Transform,
Proceedings of IEEE, 51, 868-869.

* Transcript of slide from Norden E. Huang ® &/ AnCAD



Nuttal Theorem?*

« For any function x(t), having a quadrature xq(t), and a
Hilbert transform xh(t); then,

_f|xq () — xh(()|°dt
O
(@)
_[ (a))| dco
where Fqg(w) is the spectrum of xq(t).

Nuttal, A. H., 1966: On the quadrature approximation to the Hilbert
Transform of modulated signal, Proc. IEEE, 54, 1458

* Transcript of slide from Norden E. Huang ® &/ AnCAD
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We can use EMD to obtain the IMF.
IMF is only necessary but not sufficient.

Bedrosian Theorem adds the requirement of not having
strong amplitude modulations.

Nuttal Theorem further points out the difference between
analytic function and quadrature. The discrepancy is
given in term of the quadrature spectrum, which is an
unknown quantity. Therefore, it cannot be evaluated.

Nuttal Theorem provides a constant limit not a function
of time; therefore, it is not very useful for non-stationary
processes.

* Transcript of slide from Norden E. Huang ® &/ AnCAD



Instantaneous Frequency: differer

methods

*Teager Energy Operator
Normalized IMF
*Generalized Zero-Crossing

] AnCAD



« Energy of a signal is normally defined as sum of square
of amplitude. For signals of different frequencies with
same oscillatory amplitude appear to have same “signal
energy.”

* In many real situation, energy needed for generating
100Hz signal is much greater than that of 10Hz, even
though the amplitudes are the same.

 If signal is generated by physical devices with rotation
motion, instantaneously the energy is related to kinetic
motion dx(t)/dt and instant work done by the motion.

- AnCAD



Teager Energy Operator

[X, y] = Xy —Xxy
[X, yI/ xy =x/x=yly
If y:X

w(X)=(X)" —xx=[xX]

L AnCAD



Discrete energy operator:

w (x(n) =x(n)* —x(n-1)x(n+1)

Instantaneous frequency

Q=cos (1- p (x(n) —x(n _1)))

20 (x(")
Amplitude
] Y (x()
v - x(-D),.
2y (x(M) U




Comparison of Different I\/Iethod'

« TEO extremely local but for linear data only.

« GZC most stable but offers only smoothed frequency
over ¥4 wave period at most.

« HHT elegant and detailed, but suffers the limitations of
Bedrosian and Nuttal Theorems.

« NHHT, with Normalized data, overcomes Bedrosian
limitation, offers local, stable and detailed Instantaneous
frequency and Error Index for nonlinear and
nonstationary data.

* Transcript of slide from Norden E. Huang ® &/ AnCAD



Five Paradoxes on Instantaneous

Frequency (a la Leon Coheny*

« |nstantaneous frequency of a signal may not be one of the
frequencies in the spectrum.

« For a signal with a line spectrum consisting of only a few sharp
frequencies, the instantaneous frequency may be continuous and
range over an infinite number of values.

« Although the spectrum of analytic signal is zero for negative
frequency, the instantaneous frequency may be negative.

« For the band limited signal the instantaneous frequency may be
outside the band.

» The value of the Instantaneous frequency should only depend on
the present time, but the analytic signal, from which the
Instantaneous frequency is computed, depends on the signal values
for the whole time space.

* Transcript of slide from Norden E. Huang ® &/ AnCAD



Observations*

« Paradoxes 1, 2 and 4 are essentially the same:
Instantaneous Frequency values may be different from

the frequency in the spectrum.

« The negative frequency in analytical signal seems to
violate Gabor’s construction.

« The analytic function, or the Hilbert Transform, involves
the functional values over the whole time domain.

* Transcript of slide from Norden E. Huang ® &/ AnCAD



The advantages of using ~

N R

« Removal of non-periodical part

« Separation of carrier frequency: even though the
spectrum is close. Such function can be hardly achieved
by frequency based filter.

* Nonlinear effect might introduce frequency harmonics in
spectrum domain. Through HHT, the nonlinear effect can
be caught by EMD/IMF. The marginal frequency
therefore enjoys shorter band width.

* Average frequency in each IMF represents Iintrinsic
signature of physics behind the data.

« Signal can be regarded as generated from rotors of
different rotating speeds (analytical signals).

- AnCAD



Comparison*

Basis a priori a priori

Frequency Convolution: Convolution:
Global Regional

Presentation Energy-frequency Energy-time-

frequency

Nonlinear no no

Non-stationary no yes

Feature extraction no Discrete: no

Continous: yes

* Transcript of slide from Norden E. Huang

Adaptive

Differentiation:

Local

Energy-time-
frequency

yes
yes
yes



Outstanding Mathematical Problen

Adaptive data analysis methodology in general
Nonlinear system identification methods

Prediction problem for nonstationary processes (end
effects)

Optimization problem (the best IMF selection and
unigueness. Is there a unigue solution?)

Spline problem (best spline implement of HHT,
convergence and 2-D)

Approximation problem (Hilbert transform and
guadrature)

* Transcript of slide from Norden E. Huang o
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Summary*®

The so called paradoxes are really not problems, once
some misconceptions are clarified.

Instantaneous Frequency (IF) has very different meaning
than the Fourier frequency.

IF for special mono-component functions only: IMFs.

Even for IMFs, there are still problems associated with
Hilbert Transform. We have to use Normalized HHT to
compute the IF.

IF is always an approximation.

* Transcript of slide from Norden E. Huang ® &/ AnCAD



Suggested Readings

 Leon Cohen, “Time-Frequency Analysis,” Prentice Hall Signal
Processing Series

 Norden E. Huang, “Hilbert-Huang Transformation 7iZ iRl » a8 [=2
F 35, View Graph, [l E8 5 94F 4520} |

* Richard A. Roberts & Clifford T. Mullis, “Digital Signal Processing,”
Addison Wesley

 Robert A. Gabel & Richard A. Roberts, “Signal And Linear Systems,”
3rd Edition, Wiley

« Jerrold E. Marsden, “Basic Complex Analysis,” Mei Ya
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Independent Component Analysis
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Independence and Correlation™

« Correlation is a measurement of co-variation between x
and y, depending on the first moment of joint pdf only.
That is, x and y are said to be correlated if they are
linearly or inverse linearly proportional to each other.

« Two signals x and y are said to be independent if and
only if any transformation of x and y yields no correlation.

* Independence implies no correlation.
« Example: longevity and inflation are independent.

- AnCAD
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Central Limit Theorem

(A. Liapunov in 1901)

If a set of signals SJ— (t) are independent,
2
with means and variances M 10

Then for a large number of M, the signal

M
X(t) = _s;(t)
j=1
M
has a pdf which is approximately gaussian with mean m = Zm j
j=1

M
and variance ¢ = Zgj?
j=1



Kurtosis: a measure of gaussianality” &

e (Gaussian distribution has
zero Kurtosis.

+00

21 _ 2

+ Kurtosis is a measure of E[x"]= j pX(X)X ax
gaussianality. X=—00

L AnCAD



Mixed signals

X1(t)=S1(t)+S2(t)
X2(t)=2*S1(t)-S2(t)

Mixes signals are correlated. That

is, X1 and X2 are somehow related.

As shown in the bottom plot, X2
and X2 are distributed in a way that
increase of X1 implies the increase
of X2.

X2

Math.CH2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)
Mixer
T T T T T T T T T
sk
of l!
I
5
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)
Math
T T T T T T T T T A\d
6 J
sk J
aF o4
sl
Py J
1k J
ok J
ak J
2+ -
3k ]
[e]
- o -
*F o
s5E ]
oo
6 o J
1 1 1 1 1 1 1 1 1 1
3.5 3 2.5 1.5 0.5 0 0.5 15 2 25
Math.CH1



After ICA

After ICA, independent sources are
recovered. The process is as
followed:

Where

S1

S2

Y2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)

Noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)

Math - ICA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)



The iIdea

« Assume sources are independent.

« Any linear superposition of sources results in signal with
more gaussianality as can be measured by Kurkosis.

« Applying linear superposition of mixed signals is the
same as an operation of linear superposition of the
source signals, though the sources signal are unknown.

« The signal with least gaussianality obtained from linear
superposition of mixed signals correlates the most to one
of the independent sources.



Thank youl!
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