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What is frequency?

•Frequency definition

•Fourier glass

•Instantaneous frequency

•Signal composition: trend, periodical, 

stochastic, and discontinuity



What is frequency?

• The inverse of period. But then what is period?

• Number of times of “happening” in a period. Then what is 

“happening”? Zero crossing, extrema, or others?

• Fourier transform. 



Frequency definition (1)

• Period is defined as number of 
events in duration of time. And 
frequency is the inverse of 
period.

• The concept of period is an 
average. So do the frequency. 

• Since there is no 
instantaneous period, there is 
no instantaneous frequency.

• Putting on Fourier glasses, 
uncertainty principle comes 
into play for sinusoidal signal. 
That is, the lower the 
frequency to be identified, the 
longer the duration of signal.



Analogy between velocity and frequency
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Single frequency?

• Is the squared periodical wave 

of single frequency?

• With Fourier glasses, sine 

wave is of single frequency 

while squared wave is of 

multiple frequencies. 

• What is the definition of 

frequency?

• What do we want to see?



Non-Periodical Signal of many frequencies?

• Does a straight has a 

frequency? 

• Putting on Fourier glasses, we 

see so many frequencies from 

a straight line.

• Again what do we want to see?



What do we want from frequency?

Data perception

• Signal is normally composed of four parts: trend, 

periodical, discontinuity(jump, end effect), and stochastic.

• Trend is best perceived in time domain.

• Discontinuity which might result in infinitely many 

components in Fourier analysis is better eliminated 

before processing. 

• Stochastic part currently is not involved in this discussion. 

• Periodical signal can be well perceived in time-

frequency-energy representation. 



Why Fourier?

1. LTI system

2. Sine/Cosine: Eigen-function of LTI system

3. Frequency: Eigen-value of LTI system



Linear Time Invariant System

• Linear System :

• Time Invariant:   
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LTI vs. Convolution
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Exponential : eigen-function of LTI system
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Sin and Cos functions are eigenfunction of LTI system.

Eigenvalue of a LTI system is frequency. 



Data Analysis vs Data Processing

Data Analysis

• For understanding

• For discovery

• Find out what’s behind 

the signal.

Data Processing

• For control

• For design

• Find out what 

model(parameters) best 

fits the pass behavior.



Sampling: 
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The connection between continuous and discrete world is via sampling:

Thru the generalized function theory, weak formulation ensures

the mathematical identity. 



DFT: zero order integration

• Discrete signal can be written as continuous function 

with Delta function trains weighted by sampled values. 

Continuous Fourier transform for the signal results 

naturally into zero order integration.  
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The accuracy of DFT*

*Extracted from “Signal And Linear System”, p331



The accuracy of DFT*

*Extracted from “Signal And Linear System”, p331



Time vs Frequency*

*Extracted from “Digital Signal Processing” by Roberts & Mullis



Time vs Frequency

Time domain

• Continuous

• Periodical (finite length)

• Discrete (sampling)

Frequency domain

• Continuous

• Discrete (sampling)

• Periodical (finite length)



Fourier Transform

Continuous in Time Continuous in Frequency
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Discrete in Time Fourier Transform 

(DTFT)

Discrete(sampling) in time Periodical in frequency
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Aliasing

1. What is aliasing?

2. Aliasing effect in time-frequency plot.

3. How to avoid aliasing?



Aliasing

20 Hz signal sampled at 15 Hz
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Source signal: sin(2*pi*10*t*t*t)

Sample rate: 1000Hz

CustomWave
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Down sampled (2sec,10sec,100sec)
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Aliasing effect in accelerometer signal
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Anti-Aliasing

• Do low pass filter on analog signal before sampling. 

(This is done normally using analog circuit. For 

advanced data acquisition system, the function is a built-

in feature.) If the frequency of interest is say Fc, signal of 

frequency higher than Fc should be eliminated. 

• Digitize signal with sampling rate higher than Nyquist

frequency 2Fc. (According to sampling theory, 

information will be lost for sampling rate lower than the 

Nyquist frequency. In practice, sampling should be much 

higher than Nyquist frequency. In practice, we suggest 

sampling rate be more than 20 times the frequency of 

interest Fc.) 



Uncertainty Principle
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Removal of Non-Periodical Signal

Frequency based filter

Iterative Gaussian Filter

EMD as filter



Is Taipei getting warmer?

Taipei hourly temp 1961-2007
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Trend Removal 

Viewer
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Taipei hourly temp 1961-2007- IGaussFilter
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Trend embedded in signal of interest

• Do we have noise signal 

of low frequency?

CustomWave
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EMD for trend removal

• EMD is also a good way 

to separate trend signal.

View IMF
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Moving Average
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Smooth curve can be obtained by moving average:

In general number of point average can be many with Gaussian weighting.



Gaussian Filter and Heat Diffusion

For continuous signal, Gaussian filter is written as 
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It is the solution of the following heat equation 

The analogy suggests that diffusion effect results in 

smoothing of signal (temperature).  



Gaussian Filter

• Iterative moving least square method

• Zero phase error

• Fast algorithm developed by Prof. Cheng of NCKU.

• Continuous signal  with trend can be written in the form:

For each iteration of Gaussian filter, polynomial order m is reduced 

by 2. 

• Gaussian function is the fundamental solution to heat equation. The 

idea of smoothing is similar to the mechanism of heat spreading, 

regarding signal as unbalanced temperature distribution to begin 

with.  
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Iterative Gaussian Filter

• For continuous signal, its Fourier representation is 

40

Gaussian filter is the weighted average with Gaussian as the 

weighting function

where



Iterative Gaussian Filter

• After m times of iteration, filtered signal is represented as 

41



Iterative Gaussian Filter
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Iterative Gaussian Filter
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b：Attenuation factor

(e.g. b=0.01)

fL：Low frequency

fH：High frequency



Iterative Gaussian Filter

• The Gaussian factor ,σ, and number of iteration, 

m, are determined via solving
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Trend Estimator

TC (Trend period) ：For low pass filter, period lower than the value will 

be annihilated. In practice Tc is approximately the length of “bump” 

(half wavelength) under which will be eliminated. 
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Time-frequency analysis and 

instantaneous frequency

1. What is time-frequency analysis?

2. The need for instantaneous frequency

3. Methods used for time-frequency analysis



TF Plot: Single frequency



TF Plot: Change of frequency

• Signal with abrupt change of 

frequency.
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TF Plot: Change of frequency and amplitude

• Signal with abrupt change of 

frequency and amplitude
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Time-Frequency Analysis Comparison

Fourier 

Transform

STFT Morlet / 

Enhanced 

Morlet

Hilbert 

Transform

HHT

Instantaneo

us frequency

n/a distribution distribution Single value Discrete 

values

Frequency 

change with 

time

no yes yes yes yes

Frequency 

resolution

good ok ok/good good good

Adaptive 

base

no no no n/a yes

Handling 

non-linear 

effect

n/a no no yes yes



Short-Term Fourier Transform

• Frequency at a certain time is 

a distribution obtained from 

Fourier transform. The short 

period of signal applied to the 

Fourier transform contains the 

specific moment of interest.

• In time-frequency analysis, 

such idea evolves as the 

Short-Term Fourier Transform 

(STFT). 
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STFT: 

Note g is a windowing function. 

For Gaussian window, the transform

is also known as Gabor Transform. 



Challenges in STFT

• Catching low frequency component needs longer time. 

• Windowing is needed to avoid end effects.

=> STFT is suitable for band-limited signal like speech and 

sound.



Morlet Transform

• Scale property in signal is 

related to frequency property 

when mother wavelet is Morlet..

• Longer duration of wavelet is 

used to catch lower frequency 

component. 
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Morlet transform

• Morlet transform on a chirp 

signal. 

• In catching the high frequency 

spectrum, mother wavelet of 

short duration of time is used. 

The spectrum of such wavelet 

suffers from wide span of 

frequency, resulting in low 

resolution, as shown in the 

right left plot.   



Enhanced Morlet Transform

• By applying Gaussian 
windowing in frequency 
domain and knowing that the 
crossed term of convolution 
between mother wavelet and 
signal is the cause of blur, the 
resolution of Morlet transform 
can be greatly improved by 
neglecting the crossed term.

• The fine structure appears in 
high frequency region is 
caused by under sampling. 
The chirp signal is digitized 
with constant sampling rate. 



Chirp signal with higher sampling rate

• With higher sampling rate, the 

fine structure in TF plot 

disappeared. This is to assure 

the fine structure pattern is 

caused by under sampling.



Time-Frequency Resolution

Heisenberg Box
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Primary vs.  Nature Frequency



Primary vs. Secondary frequency

Primary (主動頻率）

• Force vibration

• Normally with overtones 

or harmonics

• Frequency varies as 

driving frequency

Secondary （被動頻率）

• Also known as 

Fundamental or Natural 

Frequency

• Induced by forced 

excitation

• Frequency remains the 

same with various speed 

of excitation. 



Identification of frequency via spectrum 

analysis

f
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Rpm=10
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Primary frequencies change with rmp, while secondary 

frequencies remain the same.



Harmonic and Overtone

• Non-sinusoidal creates harmonics 

in spectrum domain.

• Overtone generally refers to high 

frequency peaks which is not 

exactly multiples of principle 

frequency. For example, drum 

beating.  

• Both primary and secondary 

frequencies contain overtones. 

• Primary excitation can only 

includes harmonics. 
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Primary and secondary frequency 

distinction

Channel 2-Morlet
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Amplitude modulation (beat wave)



Beat wave
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Amplitude modulation

CustomWave
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Semi-diurnal tide in ground water 

Beat wave occurs twice per month.

1.9323

29.5 days



Adapted from: http://www.hermit.org/eclipse/why_cycles.html



Adapted from: http://www.hermit.org/eclipse/why_cycles.html



Single modulation

CustomWave

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time ( sec )

-1

0

1

CustomWave-FFT

0 50 100 150 200 250 300 350 400 450 500

frequency ( Hz )

0

0.2

0.4

Sin(2*pi*50*t)*sin(2*pi*6*t)



Double modulation

CustomWave
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Single modulation

CustomWave
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Double modulation

CustomWave
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Triple modulation

CustomWave
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AP018-8000
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Hilbert-Huang Transform

1. Why is it also called Happy Hilbert

Transform?

2. HHT=EMD+HT



Empirical Mode Decomposition



tone

chirp

tone + chirp

 原始訊號
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篩檢過程有兩個目的

1.可消除載波

2.使得波形更對稱

篩檢過程就必須重複進行很多次方能達成這些結果
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 EMD 過程(Empirical Mode Decomposition, EMD)簡介
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Small wiggle effect 

Small wiggling results in much difference in envelope.



Central lines with and without intermittency 

test

Central line with intermittency test

Central line without intermittency test

Raw data



Intermittency Test

After intermittency test. There two points are not 

defined as extremas, resulting in smoother 

envelopes.



Intrinsic Mode Function (IMF)

• Definition: “Any function having the same numbers of 

zero-crossings and extrema, and also having symmetric 

envelopes defined by local maxima and minima 

respectively is defined as an Intrinsic Mode Function 

(IMF). “ ~ Norden E. Huang

• An IMF enjoys good properties of Hilbert transform.

• A signal can be regarded as composition of several IMFs. 

IMF can be obtained through a process called Empirical 

Mode Decomposition. (ref. Dr. Hsieh’s presentation file) 



Instantaneous Frequency and

Hilbert Transform



Prevailing Views of Instantaneous 

Frequency*

• The term, Instantaneous Frequency, should be banished 

forever from the dictionary of the communication 

engineer. 

» J. Shekel, 1953

• The uncertainty principle makes the concept of an 

Instantaneous Frequency impossible.

» K. Grochennig, 2001

* Transcript of slide from Norden E. Huang



Definition of Frequency*

• Fourier Analysis

• Wavelet Analysis

• Wigner-Ville Analysis

• Dynamic System through Hamiltonian:

• Teager Energy Operator

• Period between zero-crossings and extrema

• HHT analysis:

* Transcript of slide from Norden E. Huang
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The need for Instantaneous Frequency

• In classical wave theory, 

frequency is defined as time 

rate change of phase.

• Frequency is an continuous 

concept. There is need to 

clarify what we mean by 

frequency at a certain moment. 

• Uncertainty principle does 

apply.
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Instantaneous Frequency

• A time-series signal can be 
regarded as the x-axis 
projection of a planar slider 
motion. The slider moves 
along a rotating stick with axial 
velocity        , while the stick is 
spinning with an angular 
speed        . 

• The corresponding y-axis 
projection shares the same 
frequency distribution as x-axis 
signal with 90 degree phase 
shift. Such conjugate signal is 
evaluated from Hilbert 
Transform.
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Hilbert Transform
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Hilbert transform of triangular signal

Phase diagram Hilbert spectrum



Drawback of Hilbert Transform

• Negative instantaneous 

frequency occurs for signal not 

having equal number of 

extreme and zero-crossing 

points. 

• Too much DC offset also 

results in negative frequency.



Example 1:
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Hilbert Spectrum and X-Y Plot

X-Y plot
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Example 2

cos(2*pi*10*t+0.3*sin(2*pi*20*t))+cos(2*pi*26*t)+0.5*t
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Hilbert Spectrum and X-Y Plot
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EMD  
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Hilbert Spectrum Comparison
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Limitation on Hilbert Transform*

• Data need to be mono-component. Traditional 

applications using band-pass filter, which distorts the 

wave form. (EMD Resolves this problem)

• Bedrosian Theorem: Hilbert transform of [a(t) cosω(t)] 

might not be exactly [a(t)sin ω(t)] for arbitrary a and ω. 

(Normalized HHT resolves this)

• Nuttal Theorem: Hilbert transform of cos ω(t) might not 

be exactly sin ω(t) for arbitrary ω(t). (Normalized HHT 

improved on the error bound).

• But we have to realize that the Instantaneous Frequency 

us always an approximation. 

* Transcript of slide from Norden E. Huang



Limitation for IF computed through

Hilbert Transform*

• Data must be expressed in terms of Simple Oscillatory Function 

(aka Intrinsic Mode Function). (Note: Traditional applications using 

band-pass filter distorts the wave form; therefore, it can only be used 

for linear processes.) IMF is only necessary but not sufficient.

• Bedrosian Theorem: Hilbert transform of a(t)cosθ(t) might not be 

exactly a(t)sinθ(t). Spectra of a(t) and cosθ(t) must be disjoint.

• Nuttal Theorem: Hilbert transform of cosθ(t) might not be sinθ(t) for 

an arbitrary function of θ(t). Quadrature and Hilbert Transform of 

arbitrary real functions are not necessarily identical.

• Therefore, simple derivative of the phase of the analytic function 

might not work.

* Transcript of slide from Norden E. Huang



Bedrosian Theorem*

• Let f(x) and g(x) denotes generally complex functions in 

L2(- ∞, ∞) of the real variable x. If

(1) The Fourier transform F(ω) of f(x) vanished for ∣ ω ∣> a and 

the Fourier transform G(ω) of g(x) vanishes for ∣ ω ∣< a , 

where a is an arbitrary positive constant, or 

(2) f(x) and g(x) are analytic (i.e., their real and imaginary parts are 

Hilbert pairs),

then the Hilbert transform of the product of f(x) and g(x) is given

H{ f(x) g(x) } = f(x)  H{ g(x) }.

Bedrosian, E. 1963: A Product theorem for Hilbert Transform, 

Proceedings of IEEE, 51, 868-869.

* Transcript of slide from Norden E. Huang



Nuttal Theorem*

• For any function x(t), having a quadrature xq(t), and a 

Hilbert transform xh(t); then,

where Fq(ω) is the spectrum of xq(t).

Nuttal, A. H., 1966: On the quadrature approximation to the Hilbert 

Transform of modulated signal, Proc. IEEE, 54, 1458
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Difficulties with the Existing Limitations*

• We can use EMD to obtain the IMF.

• IMF is only necessary but not sufficient.

• Bedrosian Theorem adds the requirement of not having 

strong amplitude modulations.

• Nuttal Theorem further points out the difference between 

analytic function and quadrature. The discrepancy is 

given in term of the quadrature spectrum, which is an 

unknown quantity. Therefore, it cannot be evaluated. 

• Nuttal Theorem provides a constant limit not a function 

of time; therefore, it is not very useful for non-stationary 

processes.  

* Transcript of slide from Norden E. Huang



Instantaneous Frequency: different 

methods

•Teager Energy Operator

•Normalized IMF

•Generalized Zero-Crossing



Instantaneous Energy Consideration

• Energy of a signal is normally defined as sum of square 

of amplitude. For signals of different frequencies with 

same oscillatory amplitude appear to have same “signal 

energy.”

• In many real situation, energy needed for generating 

100Hz signal is much greater than that of 10Hz, even 

though the amplitudes are the same. 

• If signal is generated by physical devices with rotation 

motion, instantaneously the energy is related to kinetic 

motion dx(t)/dt and instant work done by the motion. 



Teager Energy Operator
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Comparison of Different Methods*

• TEO extremely local but for linear data only.

• GZC most stable but offers only smoothed frequency 

over ¼  wave period at most.

• HHT elegant and detailed, but suffers the limitations of 

Bedrosian and Nuttal Theorems.

• NHHT, with Normalized data, overcomes Bedrosian

limitation, offers local, stable and detailed Instantaneous 

frequency and Error Index for nonlinear and 

nonstationary data. 

* Transcript of slide from Norden E. Huang



Five Paradoxes on Instantaneous 

Frequency (a la Leon Cohen)*

• Instantaneous frequency of a signal may not be one of the 

frequencies in the spectrum.

• For a signal with a line spectrum consisting of only a few sharp 

frequencies, the instantaneous frequency may be continuous and 

range over an infinite number of values.

• Although the spectrum of analytic signal is zero for negative 

frequency, the instantaneous frequency may be negative. 

• For the band limited signal the instantaneous frequency may be 

outside the band. 

• The value of the Instantaneous frequency should only depend on 

the present time, but the analytic signal, from which the 

instantaneous frequency is computed, depends on the signal values 

for the whole time space. 

* Transcript of slide from Norden E. Huang



Observations*

• Paradoxes 1, 2 and 4 are essentially the same: 

Instantaneous Frequency values may be different from 

the frequency in the spectrum.

• The negative frequency in analytical signal seems to 

violate Gabor’s construction. 

• The analytic function, or the Hilbert Transform, involves 

the functional values over the whole time domain. 

* Transcript of slide from Norden E. Huang



The advantages of using HHT

• Removal of non-periodical part

• Separation of carrier frequency: even though the 
spectrum is close. Such function can be hardly achieved 
by frequency based filter.

• Nonlinear effect might introduce frequency harmonics in 
spectrum domain. Through HHT, the nonlinear effect can 
be caught by EMD/IMF. The marginal frequency 
therefore enjoys shorter band width. 

• Average frequency in each IMF represents intrinsic 
signature of physics behind the data. 

• Signal can be regarded as generated from rotors of 
different rotating speeds (analytical signals).



Comparison*

Fourier Wavelet Hilbert

Basis a priori a priori Adaptive

Frequency Convolution:

Global

Convolution:

Regional

Differentiation:

Local

Presentation Energy-frequency Energy-time-

frequency

Energy-time-

frequency

Nonlinear no no yes

Non-stationary no yes yes

Feature extraction no Discrete: no

Continous: yes

yes
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Outstanding Mathematical Problem*

• Adaptive data analysis methodology in general 

• Nonlinear system identification methods

• Prediction problem for nonstationary processes (end 

effects)

• Optimization problem (the best IMF selection and 

uniqueness. Is there a unique solution?)

• Spline problem (best spline implement of HHT, 

convergence and 2-D)

• Approximation problem (Hilbert transform and 

quadrature)

* Transcript of slide from Norden E. Huang



Summary*

• The so called paradoxes are really not problems, once 

some misconceptions are clarified. 

• Instantaneous Frequency (IF) has very different meaning 

than the Fourier frequency.

• IF for special mono-component functions only: IMFs.

• Even for IMFs, there are still problems associated with 

Hilbert Transform. We have to use Normalized HHT to 

compute the IF. 

• IF is always an approximation. 

* Transcript of slide from Norden E. Huang



Suggested Readings

• Leon Cohen, “Time-Frequency Analysis,” Prentice Hall Signal 

Processing Series

• Norden E. Huang, “Hilbert-Huang Transformation 方法原理，應用與
未來發展,” View Graph, 中央大學，94年4月20日

• Richard A. Roberts & Clifford T. Mullis, “Digital Signal Processing,” 

Addison Wesley

• Robert A. Gabel & Richard A. Roberts, “Signal And Linear Systems,” 

3rd Edition, Wiley

• Jerrold E. Marsden, “Basic Complex Analysis,” Mei Ya

• 于德介，程均經，洋宇，『機械故障診斷的Hilbert-Huang變換方法』
，科學出版社



Independent Component Analysis



Independence and Correlation

• Correlation is a measurement of co-variation between x 

and y, depending on the first moment of joint pdf only. 

That is, x and y are said to be correlated if they are 

linearly or inverse linearly proportional to each other. 

• Two signals x and y are said to be independent if and 

only if any transformation of x and y yields no correlation.

• Independence implies no correlation.

• Example: longevity and inflation are independent. 



Two independent sources
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Central Limit Theorem 

(A. Liapunov in 1901)
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Kurtosis: a measure of gaussianality

• Gaussian distribution has 

zero Kurtosis.

• Kurtosis is a measure of 

gaussianality.
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Mixed signals

X1(t)=S1(t)+S2(t)

X2(t)=2*S1(t)-S2(t)

Mixes signals are correlated. That 

is, X1 and X2 are somehow related. 

As shown in the bottom plot, X2 

and X2 are distributed in a way that 

increase of X1 implies the increase 

of X2.
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After ICA

After ICA, independent sources are 

recovered. The process is as 

followed:

X = A S

Y = B X

Where

AB ~= I

Sine

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time ( sec )

-1

0

1

Noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time ( sec )

-2

0

2

Math - ICA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time ( sec )

-4

-3

-2

-1

0

1

2

3

4

5

6

7

S1

S2

Y1

Y2



The idea

• Assume sources are independent.

• Any linear superposition of sources results in signal with 

more gaussianality as can be measured by Kurkosis. 

• Applying linear superposition of mixed signals is the 

same as an operation of linear superposition of the 

source signals, though the sources signal are unknown. 

• The signal with least gaussianality obtained from linear 

superposition of mixed signals correlates the most to one 

of the independent sources. 



Thank you!


