時頻分析近年來的發展

Recent Development of Time-Frequency Analysis

丁建均

國立台灣大學電信工程學研究所

一、什麼是時頻分析 (Time-Frequency Analysis)

Frequency Analysis: by Fourier transform (FT)

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

Fourier transform 不足的地方:

無法看出頻率隨著時間而改變的情形

Example 1

 $x(t) = \cos(440\pi t)$ when t < 0.5, La

 $x(t) = \cos(660\pi t)$ when $0.5 \le t < 1$, Me

 $x(t) = \cos(524\pi t)$ when $t \ge 1$ Do

The Fourier transform of x(t)

Short-Time Fourier Transform

$$X(t,f) = \int_{-\infty}^{\infty} w(t-\tau)x(\tau)e^{-j2\pi f \tau}d\tau$$

w(t): mask function

也稱作 windowed Fourier transform 或 time-dependent Fourier transform

例如:

$$w(t) = \exp(-\sigma t^2)$$

(此時 short-time Fourier transform 被稱作 Gabor transform)

Example: $x(t) = \cos(440\pi t)$ when t < 0.5, $x(t) = \cos(660\pi t)$ when $0.5 \le t < 1$, $x(t) = \cos(524\pi t)$ when $t \ge 1$

用 Gray level 來表示 X(t,f) 的 amplitude

瞬時頻率 (Instantaneous Frequency)

If
$$x(t) = \sum_{k=1}^{N} a_k \cdot \exp(j \cdot \phi_k(t))$$

then the instantaneous frequency is

$$\frac{\phi_1'(t_0)}{2\pi}, \frac{\phi_2'(t_0)}{2\pi}, \frac{\phi_3'(t_0)}{2\pi}, \cdots, \frac{\phi_N'(t_0)}{2\pi}$$

If the order of $\phi_k(t) > 1$, then instantaneous frequency varies with time

Example 2

(a)
$$x(t) = 0.5\cos(6400\pi t - 600\pi t^2)$$
 $t \in [0, 3]$

瞬時頻率 3200-600t

(b)
$$x(t) = 0.5\cos(600\pi t^3 - 2700\pi t^2 + 5050\pi t)$$
 $t \in [0, 3]$

Fourier transform

$$x(t) = 0.5\cos(6400\pi t - 600\pi t^2)$$

$$x(t) = 0.5\cos(600\pi t^3 - 2700\pi t^2 + 5050\pi t)$$

Short-time Fourier transform

$$x(t) = 0.5\cos(6400\pi t - 600\pi t^2) \qquad x(t) = 0.5\cos(6400\pi t - 600\pi t^2)$$

$$x(t) = 0.5\cos(600\pi t^3 - 2700\pi t^2 + 5050\pi t)$$

頻率會隨著時間而變化的例子:

Frequency Modulation (FM) Signal

Speech

Music

Others (Animal voice, Doppler effect, seismic waves, radar system, optics, rectangular function)

In fact, in addition to sinusoid-like functions, the instantaneous frequencies of other functions will inevitably vary with time.

二、時頻分析的分類和發展歷史

時頻分析理論發展年表

AD 1785	The <u>Laplace transform</u> was invented
AD 1812	The Fourier transform was invented
AD 1822	The work of the Fourier transform was published
AD 1910	The <u>Haar Transform</u> was proposed
AD 1927	Heisenberg discovered the uncertainty principle
AD 1929	The <u>fractional Fourier transform</u> was invented by Wiener
AD 1932	The Wigner distribution function was proposed
AD 1946	The <u>short-time Fourier transform</u> and the <u>Gabor transform</u> was proposed. (In the same year, the computer was invented)
AD 1961	Slepian and Pollak found the prolate spheroidal wave function
AD 1966	Cohen's class distribution was invented

- AD 1971 Moshinsky and Quesne proposed the linear canonical transform
- AD 1980 The <u>fractional Fourier transform</u> was re-invented by Namias
- AD 1981 Morlet proposed the wavelet transform
- AD 1982 The relations between the random process and the Wigner distribution function was found by Martin and Flandrin
- AD 1988 Mallat and Meyer proposed the <u>multiresolution structure of the wavelet</u> transform; In the same year, Daubechies proposed the <u>compact support</u> orthogonal wavelet
- AD 1989 The <u>Choi-Williams distribution</u> was proposed; In the same year, Mallat proposed the <u>fast wavelet transform</u>
- AD 1990 The cone-Shape distribution was proposed by Zhao, Atlas, and Marks
- AD 1993 Mallat and Zhang proposed the <u>matching pursuit</u>; In the same year, the rotation relation between the WDF and the fractional Fourier transform was found by Lohmann

- AD 1994 The applications of the <u>fractional Fourier transform</u> in signal processing were found by Almeida, Ozaktas, Wolf, Lohmann, and Pei
- AD 1995 L. J. Stankovic, S. Stankovic, and Fakultet proposed the <u>pseudo</u> Wigner distribution
- AD 1996 Stockwell, Mansinha, and Lowe proposed the Stransform
- AD 1998 N. E. Huang proposed the Hilbert-Huang transform
- AD 1999 Candes, Donoho, Antoine, Murenzi, and Vandergheynst proposed the directional wavelet transform
- AD 2000 The standard of JPEG 2000 was published by ISO
- AD 2002 Stankovic proposed the time frequency distribution with complex arguments
- AD 2003 Pinnegar and Mansinha proposed the general form of the S transform
- AD 2007 The Gabor-Wigner transform was proposed by Pei and Ding

時頻分析理論的五大家族

- (1) Short-Time Fourier transform 家族
- (2) Wigner distribution function 家族
- (3) Wavelet transform 家族
- (4) Time-Variant Basis Expansion 家族
- (5) Hilbert-Huang transform 家族

時頻分析的大家族

(1) Short-Time Fourier Transform (1946)

$$X(t,f) = \int_{-\infty}^{\infty} w(t-\tau)x(\tau)e^{-j2\pi f \tau}d\tau$$

(2) Wigner Distribution Function (1932)

$$W_{x}(t,f) = \int_{-\infty}^{\infty} x(t+\tau/2) \cdot x^{*}(t-\tau/2) e^{-j2\pi\tau f} \cdot d\tau$$

Simulations

$$x(t) = \cos(2\pi t)$$

by WDF

by short-time Fourier transform

(3) Wavelet Transform (1981)

$$x_{L}[n] = \sum_{k} x[n-k]g[k]$$

$$x_{1,L}[n] = \sum_{k} x[2n-k]g[k]$$

$$x_{H}[n] = \sum_{k} x[n-k]h[k]$$

$$x_{1,H}[n] = \sum_{k} x[2n-k]h[k]$$

例子: 2-point Haar wavelet

$$g[n] = 1/2$$
 for $n = -1$, 0
 $g[n] = 0$ otherwise

then

$$h[0] = 1/2, h[-1] = -1/2,$$

 $h[n] = 0$ otherwise

$$x_{1,H}[n] = \frac{x[2n] - x[2n+1]}{2}$$
(兩點之差)

2-D 的情形

3次2-D DWT 的結果

三、時頻分析近年來的發展

- (1) Problem about Computation Time
- (2) New Time-Frequency Analysis Tool
 S transform
 Asymmetric short-time Fourier transform
 Gabor-Wigner transform
 Directional Wavelet transform
 Hilbert-Huang transform
- (3) New ApplicationsAdaptive sampling theoryAdaptive filter designBiology

3-1 Problem about Computation Time

(1) 對於許多信號的時頻分佈而言

$$X(t,f)$$
 和 $X(t+\Delta_t,f)$ 之間有高度的相關性

"Adaptive interval" and "interpolation"

(2) 可預測瞬時頻率的位置

大部分信號瞬時頻率都偏低頻

且只要是由樂器或生物聲帶產生的信號,都會有「倍頻」的現象

Short-time Fourier transform of a music signal

 Δ_{τ} = 1/44100 (總共有 44100 × 1.6077 sec + 1 = 70902 點)

with adaptive output sampling intervals

時頻分析的大家族

3-2 Asymmetric Short-Time Fourier Transform

Short-Time Fourier Transform

(2005?)

$$X(t,f) = \int_{-\infty}^{\infty} w(t-\tau)x(\tau)e^{-j2\pi f \tau}d\tau$$

通常 w(t) 是左右對稱的

但是在某些應用(例如地震波的偵測)

使用非對稱的 window 會有較好的效果

3-3 S Transform (1996)

$$S_{x}(t,f) = \left| f \right| \int_{-\infty}^{\infty} x(\tau) \exp \left[-\pi (t - \tau)^{2} f^{2} \right] \exp \left(-j2\pi f \tau \right) d\tau$$

比較:原本的 short-time Fourier transform 當 $w(t) = \exp(-\pi t^2)$ 時

$$X(t,f) = \int_{-\infty}^{\infty} x(\tau) \exp\left[-\pi t^{2}\right] \exp\left(-j2\pi f\tau\right) d\tau$$

 $f \uparrow$, window width \downarrow

 $f \downarrow$, window width \uparrow

[Ref] R. G. Stockwell, L. Mansinha, and R. P. Lowe, "Localization of the complex spectrum: the S transform," *IEEE Trans. Signal Processing*, vol. 44, no. 4, pp. 998–1001, Apr. 1996.

$$x(t) = \cos(\pi t)$$
 when $t < 10$,

$$x(t) = \cos(3\pi t)$$
 when $10 \le t < 20$,

$$x(t) = \cos(2\pi t)$$
 when $t \ge 20$

Using the short-time Fourier transform

$$x(t) = \cos(\pi t)$$
 when $t < 10$,
 $x(t) = \cos(3\pi t)$ when $10 \le t < 20$,
 $x(t) = \cos(2\pi t)$ when $t \ge 20$

Using the S transform

3-4 Gabor-Wigner Transform (2007)

如何同時達成(1) high clarity

(2) no cross-term 的目標?

 $\cos(2\pi t)$

by short-time Fourier transform

[Ref] S. C. Pei and J. J. Ding, "Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing," *IEEE Trans. Signal Processing*, vol. 55, no. 10, pp. 4839-4850, Oct. 2007.

3-5 Directional Wavelet Transform (1999)

Wavelet transform 未必要沿著 x, y 軸來做

- curvelet
- contourlet
- bandlet
- shearlet

- Fresnelet
- wedgelet
- brushlet

• Bandlet

根據物體的紋理或邊界,來調整 wavelet transforms 的方向

Stephane Mallet and Gabriel Peyre, "A review of Bandlet methods for geometrical image representation," *Numerical Algorithms*, Apr. 2002.

3-6 Hilbert-Huang Transform (國產) (1998)

為中研院黃鍔院士於1998年提出

時頻分析,何必要用到那麼複雜的數學?

(Step 1) Initial: y(t) = x(t), (x(t) is the input) n = 1, k = 1

(Step 2) Find the local peaks

(Step 3) Connect local peaks

通常使用 B-spline, 尤其是 cubic B-spline 來連接

(Step 4) Find the local dips

(Step 5) Connect the local dips

$$z(t) = \frac{e_{\min}(t) + e_{\max}(t)}{2}$$
 (pink line)

(Step 6-2) Compute the residue $h_k(t) = y(t) - z(t)$

- Step 7 Repeat Steps 1-6 to determine the intrinsic mode function (IMF)
- Step 8 Repeat Steps 1-7 to further determine x(t)
- Step 9 Determine the instantaneous frequency for each IMF

(just calculating the number of zero-crossing during [t-1/2, t+1/2] and dividing the result by 2)

$$x(t) = 0.2t + \cos(2\pi t) + 0.4\cos(10\pi t)$$

3-7 Application: Adaptive Sampling

Nyquist rate: $\Delta_t < 1/2B$ B: bandwidth

重要定理:

Number of sampling points == Area of time frequency distribution

3-8 Application: Adaptive Filter Design

3-9 Applications in Biology

Whale voice

Data source: http://oalib.hlsresearch.com/Whales/index.html

四、結論

(1) 由於計算速度的大幅提升,使得使用「時頻分析」來取代「傅立葉轉換」來做信號分析變得更加可行

所有傅立葉轉換的應用,都將會是時頻分析的應用

(2) 時頻分析新理論和新應用的發展,有待大家共同努力

投影片下載網址: http://djj.ee.ntu.edu.tw/TF.ppt