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Failure rate
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Corrective (‘breakdown’)
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maintenance
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machine management
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4 Efficiency

Flow rate

Gram mol| weight/viscosity/density
Rotational speed

Electric currentivoltage/suction/ ™,
discharge prassure

Temperature

] " Signals
Rotor |ateral vibrations \ qualifying
Rotor torsional vibrations for warmning/

Rotor radial position alarm devices
Thrust (axial) position
Casing vibrations
Torgue

Horsepower

Heat distribution

Lube/oil pressure, flow, and temperature
Cracking

Moise

Qil analysis (wear particles)
Perturbation testing

Mondestructive testing
Impact testing
Perturbation testing
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Figure 5-73. Acceplance envelopa drawn around acceptable velocity peaks in a compres-

s0r spectrum.
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| 150 2372 — 180 Guideline [or Machinery Vibration Severily

. . . Examples of guality judgment [or
Ranges of Vibration severity wpﬁrulc clishcs .;fl m:chincs
Welocity — inds Velocity — mmis Class 1 Class Class Class IV

— Peak — IS 11 111

015 0,28

1.025 0.45

(.039 0.71

0,062 1.12

(L1194 1.3

0154 2.8

0,248 4.5

(1392 7.1

0,617 11.2

0,993 15

1.54 28

248 45

3.94 71

M= Good

B — Acceptable
C — Still acceptable
D — Mol acceplable
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Figure 1.1
Functional diagram of a PC-based dara acguisition system
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PROFPERTY SENSOR
Temperature Thermocouple

Silicon
RTD
Thermistor
Force/Pressure Strain Gage
Piezoelectric
Acceleration Accelerometer
Position VDT
Light Intensity Photodiode

% [2, 6, 8]

ACTIVE/PASSIVE ouUTPUT
Passive Woltaoge

Active Voltage/Current
Active Resistance
Active Resistance
Active Resistance
Passive Voltage

Active Capacitance
Active AC Voltage
Passive Current

Figure T1.2.2: Typical sensors and their outputs

Radiant

echanice

Signal
domains

Thermocouple SME 9-Pin D-Sub

Magnetic

Banana Jack Lemo Strain Relief

Figure 1.5
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Six signal domains
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FIGURE 35.4 Examples of signal connectivity options.
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Diaphracgrm

Backplans

T Body

Insulator

Figure 78.3. 7 NMeasurerment
miicrophorne, cut-avway viewvw

Figure 18.9.1; Sound intensity probe,

Figure 18.9.2: Array microphone.

4 L
AT
T

L4

Upper Curve: Random respense of microphone with
grideap in random Incident sound field.
er Curve: Pressure response as tested
with electrostafic actuator.

)

))or B

Upper Curve: Free-field response of microphone with
gridcap in 0° incident sound field.
Lower Curve: Pressure response as tested
with electrostaic actuator.

soHz  1ooHz 250Hz  s0Hz 1K £ 5K 1K 20K 50K 100K 150K

Figure 18.5.1: Frequency response of 2" microphone
using an electrostatic actuator {lower curve).
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Figure 18.5.4: Free field microphone frequency response.
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20° 20°
/ 2 kHz
o
o 8 kHz
o° 180° O° 180°
12 kHz
20° 20°

O T 0 T

i . i 120" Figure 18.5.5: Directionality of a ¥z” free field microphone,
Figure 18.5.3: Free field corrections. alone and mounted on a sound level meter.
Pressure and Random Incidence Microphones
Diameter, Inch Y Vo Y2, high sensitivity 1"
Type P and RI P and RI P and RI Pressure
Sensitivity, mvV/Pa 1.3 12 50 &0
Low Frequency, Hz* 4 4 3 3
High Freqguency, kHz 7O 25 10 =]
Thermal MNoise, dB 31 18 15 10
3% Distortion Limit, dB 170 160 145 145

* Based on freauencvy response variation within =2%.

Free Field Microphones
Diameter, in. 4 Ve Yz, high sensitivity 1
Sensitivity, mV/Pa 4 12 50 50
Low Frequency, Hz* 4 4 3 3
High Frequency, kHz" 80 40 20 18
Thermal Noise, dB 30 20 15 10
3% Distortion Limit, dB 160 160 145 145

* Based on frequency response variation within +2%.
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ICF Sensor Appliod Pre-load
i Circuit ppiie
Aﬁqusllc I Acceleration N 20
Shield Seismic
N NN NN . .
Seismic .«.‘3 Piezoelectric Mass| S Piezoelectric
Mass § é/.\ § Material Crystal
Preload § g / § § . -
Ring §§ / i |- Lead Wire Electrode - Built-in Electronics
& £
"§7 Z 7§ Electrical
/ "g .~ Connector Signal (+)
Base /A._é
= [l
= | -. Ground (-)

_

Threaded
Mounting
Hole

Figure 5.2.8: Compression mode accelerometer.

Figure 5.2.6: Shear mode accelerometer. Lid
Through Hole

Piezoelectric Element

3
Sensitive
Inertial Mass s

f " - I Piezoresistive
Seismic Mass Piezgrosistive ey

y — Accelerometer Base

Figure 5.2.7: Flexural mode accelerometer. Figure 5.2.10: MEMS piezoresistive

accelerometer flexure.
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Figure 5.5.1: Relative frequency response of Cable fastened with tape of ciamp.
different accelerometer mounting techniques. Figure 5.5.2: Cable strain relief of accelerometers.
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Table 12.4.7 5 Fregquency range guidelines [Ref. 4],

Recommended Freguency Spans (Upper Freguency)

Shaft Wibration 10 = RPN
Gearbox 3 = GMEF
Rolling Element Bearings 10 > BPFL
Pumps 3 = VP
Motors S Generators 3 x (2 > LF)
Fans 3 = BP
Sleeve Bearings 10 = RPM

RPM — Revolutions Per Minute

GMFEF — Gear Mesh Frequency

BPFI — Ball Pass Frequency Inner race
WP — Vane Pass frequency

LF — Line Frequency (60 Hz in TTSA)
BP — Blade Pass frequency

Table 5.3.2: Typical accelerometer characteristics.

Accelerometer Freguency | Sensitivity Measurement Dynamic Sizefweight
Type Hange Range Range

IEPE Piezoelectric 0.5Hzto .05mVigto 0.000001 g's to ~120 dB .2 Gram 10 200 +
Accelerometer 50 000 Hz 10Vig 100,000 ¢'s grams
Charge Piezoelec- 0.5Hzto .01 pCrg to 0.00001 g's to ~110dB 14 grams to 200 +
fric Accelerometer 50 000 Hz 100 pCly 100,000 ¢'s grams
Piezoresistive 01010000 0.0001 to 0.001 to ~80 dB 1to 100 grams
Accelerometer Hz 10 mVig 100000 ¢'s
Capacitive 0o 1000 10 mV/ig to 0.00005 g's to ~90 dB 10 grams to 100
Accelerometer Hz 1Vig 1000 ¢'s grams
Servo 0to100Hz | 1to10V/g <0.000001 g's >120 dB >50 grams
Accelerometer t010g's
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IEPE£: Charge % sz " $2[8]
|

Typical
Quariz
|GP¥ Sensor

Amplifier

Coaial or Canstant Current

Two Conductor
Cable

Decoupling Capacitor
|

Signal
Conditioner

|
! IR
|
K El)l | Current G
| | ReguIaIing Charge Outout | !
| + | Dode | S | "h :
E.q | I Vy | | | Gl Nt
| LN o B e [ i
| | — VOC | b, : : [
| Power B : N =t N ]
| o | | 3 : Figure 5.2.5:
e mmm— = .19y | | 1 Laboratory charge
! . | f i
Figqure 5.2.3: Typical [EPE system.  +L----- oo plersystem
Plezoelectic Crystal Charge Amplifer
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Table 5.3.1: Comparison of accelerometer types.

Accelerometer Type | Advantages Limitations Typical Applications
IEPE Piezoelectric Wide Dynamic Range Limited Temperature Modal Analysis
Accelerometer Wide Frequency Fange Range NVH

Durable Max Temperature of 175°C | Epgine NVH

(High Shock Protection) (350°F) Flight testing

Powered by Low Cost
Constant Current Source
Fixed Qutput

Less Susceptible to EMI
and RF Interference

Can be Made Very Small
Less Operator Attention,
Training and Installation
Expertise Required

High Impedance Circuitry
Sealed in Sensor

Long Cable Driving without
Noise Increase

Operates into Many Data
Acquisition Devices with
Built-in Constant Current
Input

Operates across Slip Rings
Lower System Cost per
Channel

Low Frequency Response
is Fixed within the Sensor

Built in amplifier is exposed
to same test environment
as the element of the
sensor

Body In White Testing
Cryogenic

Drop Testing

Ground Vibration Testing
HALT/HASS

Seismic Testing

Squeak and Rattle
Helmet and Sport Equip-
ment Testing

Vibration Isolation and
Control

i FHE AnCAD
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Charge Piezoelectric
Accelerometer

High operating tempera-
tures to 70070

Wide dynamic Range
Wide Frequency Range
(Durable) High Shock
Protection

Flexible Output

Simpler Design fewer parts
Charge Converter electron-
ics is usually at ambient
condition, away from test
environment

More Carefattention is
required to install and
maintain

High impedance circuitry
must be kept clean and dry

Capacitive loading from
long cable run results in
noise floor increase

Powered By Charge Amp
which can be complicated
and expensive

Need to use Special Low
Noise Cable

Jet Engine

High Temperature
Steam Pipes
Turbo Machinery
Steam Turbine
Exhaust

Brake

Accelerometer Type

Advantages

Limitations

Typical Applications

Piezoresistive

DC Response

Lower Shock Protection

Crash Testing

Highest Accuracy for Low
Level Low Frequency Mea-
surements

High Cost

Fragile, Low Shock Protec-
tion.

Accelerometer Small Size Smaller Dynamic Range Flight testing
Shock testing
Capacitive DC Response Frequency Range Ride Quality
Accelerometer Better Resolution than PR Average Resolution Ride Simulation
Type Accelerometer Bridge Testing
Flutter
Airbag Sensor
Alarms
Servo Accelerometer High Sensitivity Limited Frequency range, Guidance

Applications Requiring little
or no DC Baseline Drift

i FHE AnCAD
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Signal Types

Dreterministic

Periodic

E.g..
* Blade-passing signal
of a turbine at constant

speaed

*= Counter-rotating-mass
shaker signal at constant

Transient

E.g..

* Shock wave generated
from an impact test with

known impulse

* Step response of a
damped oscillator

Handom

(Future not precisely known through
finite observations or analysis)

E.g..

* Mlachine tool vibration
#* Jet engine noise

* Aerodynamic gusts
#* Road irregularity disturbances
* Atmospheric temperature

* Farthguake motions

speed
* Electrical line noise

* Response of a

* Step response of an
undamped oscillator

#* Steady-state response of
a damped system to a
sine excitation

i FHE AnCAD

variable-speed rotor
* Excitation of a variable-
frequency shaker

22
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FIGURE 226 Time-histories and autospectra for wide-bandwidth (A) and nerrow-bundwidth (B)
tardom vibrations.
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FIGURE 1310 (A) Spectrum of a coatinuous band-
limited signal with maximum frequency f.. (B) Spectrum of
digitized signal with sampling frequency i > 2. (C) Spec-
trum of digitized signal with sampling frequency f = 2/ the
hatched area indicates aliased components
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FIGURE13.11  Effect time signals and spectra of antialiasing filters {A) Time signal with filter.

(B) Spectrum with filter. (C) Time signal without filter. (D) Speetrum without filter.
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FIGURE 1312 IVA conversion with constant voltage between samples. (A) Digitized time sig-
nal and its amplitude spectrum. (8) Bectangular pulse length Ar (equal to 1) and its amplitude
spectrum. {C) Convolution of (A) and (B) and the resulting amplitude spectram.
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Satﬁpled window \

/ \_\ Here a WINDOW function is applied -
Data NOT perindic within example - HANNING WINDCW
sampled window

Thus the FFT sees this... A /\

NN N v

pEEmy i

These are sampled periods Now the FFT algerithm sees this ...

AA X

Figure 44 Figure 4.5
The principle of windowing Window functions
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TIME SIGNALS FFT SPECTRA

AMPL I TUDE

LOG AMPLITUDE

1 1 i i i ]

TIME
f— ANALY ZER RECORD LENGTH T——m

{ci

FREQUENCY

FIGURE 149 Time-window effects when analvzing a sinusoidal signal in an FFT
analyzer using rectangular weighting. (A) Integer mumber of periods, no discontinuity.
(B) and (C) Half integer number of periods but with different phase relationships. giv-
ing a different discontinuity when the ends are joined into a loop.
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at zero points (compare with Fig. 14.94). (B) Half integer number of periods,
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FIGURE 14.12 Comparison of rectangular and Hanning window functions of ~ »
length T seconds. Full line—rectangular weighting: dotted line—Hanning 8 0.3 ™. 09 2
weighting. The inset shows the weighting functions in the time domain. x : e \ ) %
. .o - S o
TABLE 14.2 Properties of Various Data Windows 5 o2b—-it 1= \\\ 06 &
= ~
- ; 5 aL ~ X 2
Side lobe Maximum & © B R RN S
Highest side fall-off, Noise amplitude & e o -
Window type lobe, dB dB/decade  bandwidth* error, dB %5 [ 2 3 q 5 6
A o 4dB
Rectangular -134 -0 i 39 4B DIFFERENCE
Hanning =32 ~fl) 1.50 14 (D)
. i 5 N
Ha.mmmg 4." 0 1.3 18 FIGURE 14.14 Picket fence corrections for Hanning weighting,
Kaiser-Bessel —69 -0 1.30 1.0 where AL = level correction, dB: Af = frequency correction: He; B =
Truncated Gaussian —50 -0 1.90 0.9 line spacing, Hz; AdB = difference in decibels between the two highest
T " samples around a peak representing a discrete frequency component.
Flatto -3 0 170 <D 1 d k t d te fi L
allop - b o Three examples are shown: (A} Actual frequency coincides with cen-
A . , . ter line. { B) Actual frequency midway between two lines. (C) General
Relative to line spacing. situation. Note that the frequency correction AFE is almost linear.
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FIGURE 14.13 Comparison of worst-case filter characteristics for rectangular and other weight-
ing functions for an S0-dB dynamic range. (A) Rectangulayr, (8 Kaiser-Bessel, (O) Hanning. (D)
Flattop.
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FIGURE 14.20 Owerall weighting functions for spectrum averaging with overlapping Hanning win-
dows. [A) Zero overlap (step length T). (B) 50 percent overlap (step length T72). {C) 66.7 percent over-
lap (step length TY3). (I} 75 percent overlap (step length T/4). T is the record length for the FFT
transform.
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FIGURE 14.18  Effect of averaging with a stationary
spectrum (average of 1). (B) The linear ave [ eight spectra.

i FHE AnCAD

v determin

v 2/

€= Slandara Brror

IlOdB

€ = Stwndard error

FIGURE 14.19 Effect of aver:
Instantaneous spectrum. (B) Average of cight spectra. (C) Average of 128

istic signal. (A) Iestantansous
SPCC[ ra.

33

4 6 B 10
FREQUENCY, kHz

ging with a stationary random signal. (A4}

Visual Signal

vy

N = 2
* 2 ATk

| ¥

A 47 3 e[ 11]

TABLE 16.5 Typical Applications of the Various Analysis Techniques

Technique

Avpplication

Fault/machine

Zoom

Phase

Time signal

Cepstrum

Envelope analysis

Dynamic crest
factor

Synchronous time
averaging

Impact testing

Scan analysis

Separation of closely
spaced components
Improvement of signal-to-
noise ratio, separation of
resonances from pure tones

Operational deflection shapes

Detection of developing cracks
in shafts

Balancing

Waveform visualization for
identification of distortion

Identification and separation
of families of harmonics

Identification and separation
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Synchronous motors (loose stator coils)

Loose stator coils in synchronous motors will generate fairly high vibrations at the coil
pass frequency (CPF), defined as:

CPF = number of stator coils < rpm

(number of stator coils = poles x number of coils/pole)
The coil pass frequency will be surrounded by 13 rpm sidebands (Figure 5.68).

Electrical problems — synchronous motor
loose stator coils

@
E Coil pass freguency
‘_El with
< | 1X 1X rpm sidebands
‘ 2X |
| il iy
Frequency
Figure 5.68
Synchronous motors
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DC motor problems

DC motor defects can be detected by high vibration amplitudes at the SCR firing
frequency (6F1) and harmonics. These defects include broken field windings, bad SCRs

and loose connections (Figure 5.69).

Electrical problems — DT motor

e BFL
Radial vibrations

Amnplitude

Frequency

Figure 5.69
DC Motor

Other defects, such as loose or blown fuses and shorted control cards, can cause high
amplitude peaks at 1> through 5x line frequency.
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